Exercice 1:

- 1. $\exists k \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ f(x) = k$.
- 2. $\exists (x_1, x_2) \in \mathbb{R}^2, \ f(x_1) \neq f(x_2).$
- 3. $\forall n \in \mathbb{Z}, \exists m \in \mathbb{Z}, m > n$.
- 4. $\forall x \in \mathbb{R}, \ x \geqslant 3 \Rightarrow x \geqslant 2.$
- 5. $\forall x \in \mathbb{R}, \ x \geqslant 2 \Rightarrow x \geqslant 1.$
- 6. $\forall n \in \mathbb{Z}, n \geqslant 3 \Leftrightarrow n > 2$.

Exercice 2:

- 1. $\exists x \in A, \forall y \in B, (P(x) \text{ et non } Q(x,y)).$
- 2. $(\exists x \in E, A(x))$ et $(\exists x \in E, \text{ non } A(x))$.
- 3. $(\forall x \in E, \text{ non } A(x))$ ou $(\exists (x_1, x_2) \in E^2, x_1 \neq x_2, A(x_1) \text{ et } A(x_2))$.

Exercice 3:

- 1. C'est faux. Posons x=1 et y=2, on a $x+y^2=5\neq 1$.
- 2. C'est faux. Posons x=2. Soit $y\in\mathbb{R}, y^2\geqslant 0>-1=1-x$ donc $x+y^2\neq 1$.
- 3. C'est faux. Soit $y \in \mathbb{R}$. Posons $x = -y^2$. Alors $x + y^2 = 0 \neq 1$.
- 4. C'est vrai. Posons x = 1 et y = 0, alors $x + y^2 = 1$.
- 5. C'est faux. Soit $x \in \mathbb{R}$. Premier cas, si $x \neq 1$, posons y = 0, $x + y^2 = x \neq 1$. Deuxième cas, si x = 1 posons y = 1, $x + y^2 = 2 \neq 1$.
- 6. C'est vrai. Soit $y \in \mathbb{R}$. Posons $x = 1 y^2$ alors $x + y^2 = 1$

Exercice 4: On raisonne par l'absurde. Supposons que l'ensemble des nombres premiers (on le note \mathcal{P}) soit fini. Alors, $\exists n \in \mathbb{N}^*, \ \exists (p_1, ..., p_n) \in \mathbb{N}^n, \ \mathcal{P} = \{p_1; ...; p_n\}.$

Notons $N = \prod_{k=1}^{n} p_k + 1$. Soit N est premier, soit il ne l'est pas.

- Supposons N premier. Alors, $\exists i \in [1, n], N = p_i$. Or, $N > p_i$ donc c'est absurde.
- Supposons N non premier. Alors, $\exists i \in [1; n], p_i | N$. Or, $p_i | \prod_{k=1}^n p_k$ donc, par différence, $p_i | \left(N - \prod_{k=1}^n p_k\right)$, i.e. $p_i | 1$. C'est absurde.

Donc, l'ensemble des nombres premiers est infini.

Exercice 5:

- 1. La proposition est fausse car on peut prouver sa négation : $\exists x, y \in \mathbb{R}, x^2 = y^2$ et $x \neq y$. En effet, pour x = 1 et y = -1, on a $x^2 = y^2$ et $x \neq y$.
- 2. Montrons que la proposition est vraie i.e. montrons que : $\forall x, y \in \mathbb{R}, \ x^2 \neq y^2 \Rightarrow x \neq y$. Soit $x, y \in \mathbb{R}$. On raisonne par contraposition. Supposons que x = y. Donc $x^2 = y^2$.

Exercice 6:

- 1. Soit $x \in \mathbb{R}_+$. On raisonne par contraposée. Supposons que $x \neq 0$. On a donc x > 0. Posons $\varepsilon = \frac{x}{2} > 0$, on a $\varepsilon < x$. D'où le résultat.
- 2. On raisonne par double implication.

$$\Leftarrow: a = b = 0 \Rightarrow a + b = 0 = 0.$$

- \Rightarrow : On raisonne par contraposée. Supposons $a \neq 0$ ou $b \neq 0$. Or a et b sont des entiers positifs donc a > 0 ou b > 0. On a donc $a + b \neq 0$.
- 3. On raisonne par récurrence.

$$P(n): 6|5n^3 + n$$

- Initialisation: Pour n = 1, $5n^3 + n = 6$ donc P(1) est vraie.
- Hérédité : Supposons qu'il existe un entier $n \ge 1$ tel que P(n) soit vraie.

$$5(n+1)^3 + n + 1 = 5(n^3 + 3n^2 + 3n + 1) + n + 1 = 5n^3 + n + 15n^2 + 15n + 6 = 5n^3 + n + 15n(n+1) + 6$$

Or, 2 divise n(n+1) donc 6 divise 15n(n+1).

Par somme, 6 divise $5(n+1)^3 + n + 1$ et P(n+1) est vraie.

- Conclusion : Par le principe de récurrence, on a le résultat souhaité.
- 4. On raisonne par double implication.
 - \leq Soit $(a,b) \in \mathbb{N}^2$ tel que a=b. Ils sont bien multiples l'un de l'autre.
 - \Rightarrow Soit $(a,b) \in \mathbb{N}^2$, multiples l'un de l'autre. Si l'un des deux est nul alors l'autre aussi donc on suppose $(a,b) \neq (0,0)$.

Soit
$$(k_1, k_2) \in \mathbb{N}^2$$
, $a = k_1 b$ et $b = k_2 a$
 $\Rightarrow a = k_1 k_2 a$
 $\Rightarrow 1 = k_1 k_2$
 $\Rightarrow k_1 = k_2 = 1$

Les entiers sont bien égaux.

Exercice 7: Soit $n \in \mathbb{N}$ on note P(n) la propriété suivante " $10^n - 1$ est divisible par 9". Démontrons à l'aide d'une récurrence que pour tout $n \in \mathbb{N}$, P(n) est vraie.

- Initialisation: Pour n = 0, $10^0 1 = 0 = 9 \times 0$ donc P(0) est vraie.
- <u>Hérédité</u>: Supposons qu'il existe un rang $n \in \mathbb{N}$ tel que P(n) soit vraie. On a :

$$10^{n+1} - 1 = 10^{n+1} - 10^n + 10^n - 1 = 9 \times 10^n + 10^n - 1$$
.

Or $9|9 \times 10^n$ et $9|10^n - 1$ par hypothèse de récurrence d'où $9|10^{n+1} - 1$. Donc P(n+1) est vraie.

• <u>Conclusion</u>: Par le principe de récurrence :

$$\forall n \in \mathbb{N}, 9|10^n - 1$$
.

Exercice 8: Soit $n \in \mathbb{N}$ on note P(n) la propriété suivante " $u_n = 2^{n+1} + 3^n$ ". Démontrons à l'aide d'une récurrence double que pour tout $n \in \mathbb{N}$, P(n) est vraie.

- <u>Initialisation</u>: Pour n = 0, $2^{n+1} + 3^n = 2 + 1 = 3$. Or $u_0 = 3$ donc P(0) est vraie. Pour n = 1, $2^{n+1} + 3^n = 4 + 3 = 7$. Or $u_1 = 7$ donc P(1) est vraie.
- <u>Hérédité</u>: Supposons qu'il existe un rang $n \in \mathbb{N}$ tel que P(n) et P(n+1) soient vraie.

$$u_{n+2} = 5u_{n+1} - 6u_n$$

$$= 5(2^{n+2} + 3^{n+1}) - 6(2^{n+1} + 3^n)$$

$$= 2^{n+2}(5-3) + 3^{n+1}(5-2)$$

$$= 2^{n+3} + 3^{n+2}$$

Donc P(n+1) est vraie.

• Conclusion : Par le principe de récurrence double,

$$\forall n \in \mathbb{N}, \ u_n = 2^{n+1} + 3^n \ .$$

Exercice 9: Démontrer par récurrence que pour tout $n \in \mathbb{N}^*$, il existe des entiers naturels p et q tels que $n = 2^p(2q+1)$.

Soit $n \in \mathbb{N}^*$ on note P(n) la propriété suivante " $\exists (p,q) \in \mathbb{N}^2, n = 2^p(2q+1)$ ".

Démontrons à l'aide d'une récurrence forte que pour tout $n \in \mathbb{N}^*$, P(n) est vraie.

- <u>Initialisation</u>: Pour n = 1, $n = 2^0 \times (2 \times 0 + 1)$ donc P(1) est vraie.
- <u>Hérédité</u>: Supposons qu'il existe un rang $n \in \mathbb{N}^*$ tel que, pour tout $k \in \{1, ..., n\}$, P(k) soit vraie.
 - Si n+1 est impair, alors $\exists q \in \mathbb{N}, n+1=2^0(2q+1),$ donc P(n+1) est vraie.
 - Si n+1 est pair, alors il existe $k \in \{1, ..., n\}$ tel que n+1=2k, on utilise l'hypothèse de récurrence au rang k, donc $\exists (p,q) \in \mathbb{N}^2, k=2^p(2q+1)$ d'où $n=2^{p+1}(2q+1)$, donc P(n+1) est vraie.

Conclusion: $\forall n \in \mathbb{N}^*, \exists (p,q) \in \mathbb{N}^2, n = 2^p(2q+1).$

Exercice 10: On raisonne par analyse et synthèse.

Analyse: Supposons qu'il existe une solution réelle x à l'équation $\sqrt{x+4} = x-2$. Tout d'abord, on a $x \ge -4$ pour que l'équation ait du sens. On a $x+4=(x-2)^2$ d'où $x^2-5x=0$ d'où x=0 ou x=5.

Synthèse : Pour x = 5, on a bien $\sqrt{x+4} = 3 = x-2$. Pour x = 0, $\sqrt{x+4} = 2 \neq -2 = x-2$ donc 0 n'est pas solution de l'équation.

Conclusion : $S = \{5\}.$

Exercice 11: On raisonne par analyse et synthèse.

• Analyse: On suppose que

$$\exists (a,b) \in \mathbb{R}^2, \ \forall x \in \mathbb{R}, \ x \neq 1, \ x \neq -2, \ \frac{1}{(x-1)(x+2)} = \frac{a}{x-1} + \frac{b}{x+2}$$

D'où
$$\forall x \in \mathbb{R}, \ x \neq 1, \ x \neq -2, \ \frac{1}{(x-1)(x+2)} = \frac{a(x+2)+b(x-1)}{(x-1)(x+2)}$$
 i.e. $1 = (a+b)x + 2a - b$.

Pour
$$x = 0$$
 et $x = -1$, on obtient
$$\begin{cases} 1 = 2a - b \\ 1 = a - 2b \end{cases}$$
 d'où
$$\begin{cases} a = \frac{1}{3} \\ b = -\frac{1}{3} \end{cases}$$

• Synthèse: Posons $a = \frac{1}{3}$ et $b = \frac{1}{3}$.

$$\forall x \in \mathbb{R}, \ x \neq 1, \ x \neq -2, \ \frac{a}{x-1} + \frac{b}{x+2} = \frac{1/3}{x-1} - \frac{1/3}{x+2} = \frac{1/3(x+2) - 1/3(x-1)}{(x-1)(x+2)} = \frac{1}{(x-1)(x+2)} = \frac{1$$

Conclusion: Il existe un unique couple $(a, b) \in \mathbb{R}^2$ tel que

$$\forall x \in \mathbb{R} \setminus \{-2, 1\}, \quad \frac{1}{(x-1)(x+2)} = \frac{a}{x-1} + \frac{b}{x+2}.$$

Exercice 12: On raisonne par analyse-synthèse. Soit $f: \mathbb{R} \to \mathbb{R}$.

- Analyse: Supposons qu'il existe une fonction constante k et une fonction h telle que h(0) = 0 et telles que f = k + h. Donc $\forall x \in \mathbb{R}$, f(x) = k + h(x). En évaluant en 0, on obtient : f(0) = k + h(0) = k. Donc $\forall x \in \mathbb{R}$, h(x) = f(x) f(0) et k = f(0).
- Synthèse: Posons k = f(0) et h = f f(0). Ces deux fonctions répondent au problème posé.

Exercice 13:

Soit $n \in \mathbb{N}^*$, notons P(n) la propriété suivante : "Si Arnaud laisse un morceau de la tablette de taille $n \times n$ à Arthur, alors il est en mesure de gagner la partie ". Démontrons à l'aide d'une récurrence forte que pour tout $n \in \mathbb{N}^*$, P(n) est vraie.

- Initialisation: Pour n=1, Arnaud laisse un seul carré de chocolat à Arthur donc il gagne. P(1) est vraie.
- <u>Hérédité</u>: Soit $n \in \mathbb{N}^*$. Supposons que pour tout $k \in [1, n]$, P(k) est vraie. Supposons que Arnaud laisse un morceau de la tablette de taille $(n+1) \times (n+1)$ à Arthur. Arthur découpe la tablette et rend à Arnaud une tablette rectangulaire de taille $k \times (n+1)$ où $k \in [1, n]$. Arnaud peut donc découper à son tour la tablette et laisser un morceau de taille $k \times k$ à Arthur. Or P(k) est vraie par hypothèse de récurrence, donc Arnaud est en mesure de gagner la partie.

D'où P(n+1) est vraie.

<u>Conclusion</u>: Si Arnaud laisse un morceau carré de la tablette à Arthur, alors il sera en mesure de gagner la partie à coup sur.