Chapitre 3: Ensembles et applications

\bigstar Montrer une égalité d'ensemble par double inclusion.

Exercice 1 [Solution]

Soit $A = \{(x, y) \in \mathbb{R}^2; \ 4x - y = 1\}$ et $B = \{(t + 1, 4t + 3); \ t \in \mathbb{R}\}$. Montrer que A = B.

\bigstar Manipuler les parties d'un ensemble.

Exercice 2 [Solution]

Soient $A,\,B$ et C trois parties d'un ensemble E. Monter que :

- (a) $A \cup B = A \cap C \iff B \subset A \subset C$;
- (b) $A \cap B = A \cap C \iff A \cap \overline{B} = A \cap \overline{C}$.
- ★ Montrer qu'une application est in/sur/bijective.

Exercice 3 [Solution]

Soit E un ensemble. Soit $f: E \to E$ telle que $f \circ f \circ f = f$. Montrer que f est injective si, et seulement si, f est surjective.

★ Déterminer une image directe ou une image réciproque.

Exercice 4 [Solution]

Soit E et F des ensembles. Soit $f: E \to F$. Soit $A_1, A_2 \in \mathcal{P}(E)$ et $B_1, B_2 \in \mathcal{P}(F)$. Montrer que :

- (a) $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$;
- (b) $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$;
- (c) $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$;
- (d) $f(A_1 \cap A_2) \subset f(A_1) \cap f(A_2)$. Exhiber un contre-exemple afin de montrer que cette inclusion peut être stricte.

Correction des exercices

Exercice 1 Enoncé

On raisonne par double inclusion.

Soit $a \in A$. Il existe $(x,y) \in \mathbb{R}^2$ tel que a = (x,y) et 4x - y = 1.

Posons t = x - 1. On a x = t + 1 et y = 4x - 1 = 4t + 4 - 1 = 4t + 3.

D'où $a = (t + 1, 4t + 3) \in B$.

 \supset Soit $b \in B$. Il existe $t \in \mathbb{R}$ tel que b = (t+1, 4t+3).

On remarque que 4(t+1) - (4t+3) = 1 donc $b \in A$.

Conclusion : A = B.

Exercice 2 Enoncé

Soient A, B et C trois parties d'un ensemble E.

- (a) Raisonnons par double implication.
 - Supposons que $A \cup B = A \cap C$. On a $B \subset A \cup B = A \cap C \subset A$. De plus, $A \subset A \cup B \subset A \cap C \subset C$. D'où $B \subset A \subset C$.
 - Supposons que $B\subset A\subset C$. Par conséquent, $A\cup B=A$ et $A\cap C=A$, d'où $A\cup B=A\cap C$.

Par conséquent : $A \cup B = A \cap C \iff B \subset A \subset C$.

- (b) Raisonnons par double implication.
 - \implies Supposons que $A \cap B = A \cap C$.

 - \supset Analogue à l'inclusion allée par symétrie des rôles de B et C.

Exercice 3 Enoncé

Raisonnons par double implication.

- Supposons que f est injective. Montrons que f est surjective. Soit $y \in E$. Posons x = f(y). En composant par f deux fois, f(f(x)) = f(f(f(y))). Or f(f(f(y))) = f(y). D'où f(f(x)) = f(y), puis par injectivité de f, f(x) = y. D'où f est surjective.
- Supposons que f est surjective. Montrons que f est injective. Soit $x_1, x_2 \in E$. Supposons que $f(x_1) = f(x_2)$. Par surjectivité de f, il existe $z_1, z_2 \in E$ tel que $f(z_1) = x_1$ et $f(z_2) = x_2$. D'où $f(f(z_1)) = f(f(z_2))$. On compose par f, $f(f(f(z_1))) = f(f(f(z_2)))$ i.e. $f(z_1) = f(z_2)$ i.e. $x_1 = x_2$. D'où f est injective.

Exercice 4 [Enoncé]

Soit E et F des ensembles. Soit $f: E \to F$. Soit $A_1, A_2 \in \mathcal{P}(E)$ et $B_1, B_2 \in \mathcal{P}(F)$.

(a) Soit $x \in E$. On a:

$$x \in f^{-1}(B_1 \cap B_2) \iff f(x) \in B_1 \cap B_2$$

$$\iff f(x) \in B_1 \text{ et } f(x) \in B_2$$

$$\iff x \in f^{-1}(B_1) \text{ et } x \in f^{-1}(B_2)$$

$$\iff x \in f^{-1}(B_1) \cap f^{-1}(B_2)$$

D'où $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$.

(b) Soit $x \in E$. On a:

$$x \in f^{-1}(B_1 \cup B_2) \iff f(x) \in B_1 \cup B_2$$

 $\iff f(x) \in B_1 \text{ ou } f(x) \in B_2$
 $\iff x \in f^{-1}(B_1) \text{ ou } x \in f^{-1}(B_2)$
 $\iff x \in f^{-1}(B_1) \cup f^{-1}(B_2)$

D'où
$$f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$$
.

- (c) Montrons par double inclusion que $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$.

 - On a $A_1 \subset A_1 \cup A_2$ et $A_2 \subset A_1 \cup A_2$. D'où $f(A_1) \subset f(A_1 \cup A_2)$ et $f(A_2) \subset f(A_1 \cup A_2)$. Par conséquent, $f(A_1) \cup f(A_2) \subset f(A_1 \cup A_2)$.
- (d) Montrons que $f(A_1 \cap A_2) \subset f(A_1) \cap f(A_2)$. Soit $y \in f(A_1 \cap A_2)$. Il existe $x \in A_1 \cap A_2$ tel que y = f(x). On a $x \in A_1$ donc $y \in f(A_1)$ et $x \in A_2$ donc $y \in f(A_2)$. Par conséquent, $y \in f(A_1) \cap f(A_2)$.

Pour
$$E = F = \mathbb{R}$$
, $f: x \mapsto x^2$, $A_1 = \{1\}$ et $A_2 = \{-1\}$.
 $f(A_1 \cap A_2) = f(\emptyset) = \emptyset$ et $f(A_1) \cap f(A_2) = \{1\} \cap \{1\} = \{1\}$.