Chapitre 22 : Matrices et applications linéaires

★ Calculer le noyau, l'image et le rang d'une matrice.

Exercice 1 [Solution]

Soit
$$\lambda \in \mathbb{R}$$
 et $A = \begin{pmatrix} 3 & 6 \\ 1 & 4 \end{pmatrix}$.

Pour quelles valeurs de λ la matrice $A - \lambda I_2$ n'est-elle pas inversible? Expliciter $Ker(A - \lambda I_2)$ pour de tels λ .

★ Déterminer le rang d'une famille de vecteurs en calculant celui de la matrice associée dans n'importe quelle base.

Exercice 2 [Solution]

Montrer matriciellement que la famille $(2X^2 - 1, X^2 - X + 2, 3X + 4)$ est une base de $\mathbb{R}_2[X]$.

★ Déterminer le rang d'une appli. lin. en calculant le rang de la matrice associée dans n'importe quelles bases.

Exercice 3 [Solution]

Soit $m \in \mathbb{R}$. Considérons l'endomorphisme de $\mathcal{M}_2(\mathbb{R})$ suivant $f: M \mapsto \begin{pmatrix} 1 & m \\ m & 1 \end{pmatrix} M^T$. Pour quelles valeurs de m l'endomorphisme f est-il un automorphisme?

★ Utiliser le lien entre l'inverse d'une matrice et la réciproque d'un isomorphisme.

Exercice 4 [Solution]

Soit $n \in \mathbb{N}$. Considérons l'application f définie sur $\mathbb{R}_n[X]$ telle que $f: P \mapsto X^2P'' + XP' + P$. Montrer que f est un automorphisme de $\mathbb{R}_n[X]$ et déterminer sa bijection réciproque.

- ★ Utiliser les formules de changement de base pour une famille de vecteurs ou pour une application linéaire.
- \bigstar Calculer les puissances d'une matrice à l'aide d'une matrice semblable.

Exercice 5 [Solution]

Soit f l'endomorphisme de $\mathbb{R}_2[X]$ défini par

$$f: P \mapsto P(0)(1-X^2) + P'(0)(X+X^2) + P(-1)(-X^2 - 2X + 2)$$

- 1. Déterminer la matrice de f dans la base $\mathscr{B} = (1, X, X^2)$.
- 2. Soit $P_1 = 1 X X^2$, $P_2 = -1 + X + 2X^2$ et $P_3 = 1 X^2$. Montrer que $\mathscr{B}' = (P_1, P_2, P_3)$ est une base de $\mathbb{R}_2[X]$.
- 3. Déterminer la matrice de f dans \mathscr{B}' .
- 4. En déduire, pour tout $n \in \mathbb{N}$, une expression de f^n en utilisant un changement de base afin de calculer $\mathrm{Mat}_{\mathscr{B}}(f^n)$.

Correction des exercices

Exercice 1 [Enoncé]

Soit $\lambda \in \mathbb{R}$ et $A = \begin{pmatrix} 3 & 6 \\ 1 & 4 \end{pmatrix}$. Déterminons le rang de $A - \lambda I_2$.

$$\operatorname{rg}(A-\lambda I) = \operatorname{rg}\left(\begin{pmatrix} 3-\lambda & 6 \\ 1 & 4-\lambda \end{pmatrix}\right) = \operatorname{rg}\left(\begin{pmatrix} 1 & 4-\lambda \\ 3-\lambda & 6 \end{pmatrix}\right) = \operatorname{rg}\left(\begin{pmatrix} 1 & 4-\lambda \\ 0 & 6-(4-\lambda)(3-\lambda) \end{pmatrix}\right) = \operatorname{rg}\left(\begin{pmatrix} 1 & 4-\lambda \\ 0 & \lambda^2-7\lambda+6 \end{pmatrix}\right)$$

Alors $A - \lambda I_2 \in GL_2(\mathbb{R}) \iff \operatorname{rg}(A - \lambda I) = 2 \iff \lambda^2 - 7\lambda + 6 \neq 0 \iff \lambda \notin \{1; 6\}.$

Par conséquent, la matrice $A - \lambda I_2$ n'est pas inversible si et seulement si $\lambda = 1$ ou $\lambda = 6$.

Calculons $Ker(A - \lambda I_2)$ pour $\lambda = 1$ et $\lambda = 6$.

$$\operatorname{Ker}(A - I_2) = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathcal{M}_{2,1}(\mathbb{R}), \begin{pmatrix} 2 & 6 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\} = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathcal{M}_{2,1}(\mathbb{R}), x + 3y = 0 \right\} = \operatorname{Vect}\left(\begin{pmatrix} -3 \\ 1 \end{pmatrix} \right)$$

$$\operatorname{Ker}(A - 6I_2) = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathcal{M}_{2,1}(\mathbb{R}), \begin{pmatrix} -3 & 6 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\} = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathcal{M}_{2,1}(\mathbb{R}), x - 2y = 0 \right\} = \operatorname{Vect}\left(\begin{pmatrix} 2 \\ 1 \end{pmatrix} \right)$$

Exercice 2 [Enoncé]

Notons $\mathscr{B} = (1, X, X^2)$ la base canonique de $\mathbb{R}_2[X]$. On a $\mathrm{Mat}_{\mathscr{B}}(2X^2 - 1, X^2 - X + 2, 3X + 4) = \begin{pmatrix} -1 & 2 & 4 \\ 0 & -1 & 3 \\ 2 & 1 & 0 \end{pmatrix}$.

D'où

$$\operatorname{rg}(2X^2 - 1, X^2 - X + 2, 3X + 4) = \operatorname{rg}\left(\begin{pmatrix} -1 & 2 & 4 \\ 0 & -1 & 3 \\ 2 & 1 & 0 \end{pmatrix}\right) \underset{L_3 \leftarrow L_3 + 2L_1}{=} \operatorname{rg}\left(\begin{pmatrix} -1 & 2 & 4 \\ 0 & -1 & 3 \\ 0 & 5 & 8 \end{pmatrix}\right)$$

$$= \underset{L_3 \leftarrow L_3 + 5L_2}{\operatorname{rg}}\left(\begin{pmatrix} -1 & 2 & 4 \\ 0 & -1 & 3 \\ 0 & 0 & 23 \end{pmatrix}\right) = 3$$

La famille $(2X^2 - 1, X^2 - X + 2, 3X + 4)$ est génératrice de $\mathbb{R}_2[X]$ et de cardinal $3 = \dim(\mathbb{R}_2[X])$, c'est donc une base de $\mathbb{R}_2[X]$.

Exercice 3 Enoncé

Soit $m \in \mathbb{R}$.

Déterminons la matrice de $f: M \mapsto \begin{pmatrix} 1 & m \\ m & 1 \end{pmatrix} M^T$ dans la base canonique $\mathscr{B} = (E_{i,j})_{(i,j) \in [\![1,2]\!]^2}$ de $\mathscr{M}_2(\mathbb{R})$. On a :

$$\begin{split} f(E_{1,1}) &= \begin{pmatrix} 1 & m \\ m & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ m & 0 \end{pmatrix} = E_{1,1} + mE_{2,1} \\ f(E_{1,2}) &= \begin{pmatrix} 1 & m \\ m & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} m & 0 \\ 1 & 0 \end{pmatrix} = mE_{1,1} + E_{2,1} \\ f(E_{2,1}) &= \begin{pmatrix} 1 & m \\ m & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & m \end{pmatrix} = E_{1,2} + mE_{2,2} \\ f(E_{2,2}) &= \begin{pmatrix} 1 & m \\ m & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & m \\ 0 & 1 \end{pmatrix} = mE_{1,2} + E_{2,2} \end{split}$$

Par conséquent, $\operatorname{Mat}_{\mathscr{B}}(f) = \begin{pmatrix} 1 & m & 0 & 0 \\ 0 & 0 & 1 & m \\ m & 1 & 0 & 0 \\ 0 & 0 & m & 1 \end{pmatrix}$.

L'endomorphisme f est un automorphisme si et seulement si rg $(\operatorname{Mat}_{\mathscr{B}}(f)) = 4$. Par opérations élémentaires sur les lignes et les colonnes qui préservent le rang, on a :

$$\operatorname{rg}\left(\operatorname{Mat}_{\mathscr{B}}(f)\right) = \operatorname{rg}\left(\begin{pmatrix} 1 & m & 0 & 0 \\ m & 1 & 0 & 0 \\ 0 & 0 & 1 & m \\ 0 & 0 & m & 1 \end{pmatrix}\right) \underset{L_2 \leftrightarrow L_3}{=} \operatorname{rg}\left(\begin{pmatrix} 1 & m & 0 & 0 \\ 0 & 1 - m^2 & 0 & 0 \\ 0 & 0 & 1 & m \\ 0 & 0 & 0 & 1 - m^2 \end{pmatrix}\right) = \begin{cases} 2 \text{ si } m \in \{-1; 1\}; \\ 4 \text{ sinon.} \end{cases}$$

Donc f est un automorphisme si et seulement si $m \notin \{-1, 1\}$.

Exercice 4 [Enoncé]

Soit $n \in \mathbb{N}$. Considérons l'application f définie sur $\mathbb{R}_n[X]$ telle que $f: P \mapsto X^2P'' + XP' + P$.

Notons \mathscr{B}_c la base canonique de $\mathbb{R}_n[X]$. $\forall k \in [0,n]$, $f(X^k) = (k(k-1)+k+1)X^k = (k^2+1)X^k$.

Par conséquent, $\operatorname{Mat}_{\mathscr{B}_c}(f) = \operatorname{diag}(1, 2, \dots, n^2 + 1)$. Comme $\operatorname{Mat}_{\mathscr{B}_c}(f)$ est une matrice diagonale avec des coefficients non nuls alors elle est inversible d'inverse $\operatorname{diag}(1, \frac{1}{2}, \dots, \frac{1}{n^2 + 1})$.

Ainsi f est un automorphisme de $\mathbb{R}_n[X]$ et $\mathrm{Mat}_{\mathscr{B}_c}(f^{-1}) = \mathrm{diag}(1, \frac{1}{2}, \dots, \frac{1}{n^2+1}).$

Si on note
$$Q = \sum_{k=0}^n a_k X^k$$
 un élément générique de $\mathbb{R}_n[X]$ alors $f^{-1}(Q) = \sum_{k=0}^n a_k f^{-1}(X^k) = \sum_{k=0}^n \frac{a_k}{k^2 + 1} X^k$.

Exercice 5 [Enoncé]

1.
$$\operatorname{Mat}_{\mathscr{B}}(f) = \begin{pmatrix} 3 & -2 & 2 \\ -2 & 3 & -2 \\ -2 & 2 & -1 \end{pmatrix}$$
.

- 2. La famille (P_1, P_2, P_3) est une famille de 3 vecteurs en dimension 3. Il suffit de montrer qu'elle est libre. Soit $(\lambda_1, \lambda_2, \lambda_3) \in \mathbb{R}^3$ tel que $\lambda_1 P_1 + \lambda_2 P_2 + \lambda_3 P_3 = 0$. On évalue en -1, on trouve $\lambda_1 = 0$, puis on évalue en 1, on trouve $\lambda_2 = 0$, d'où $\lambda_3 = 0$. La famille (P_1, P_2, P_3) est une base de $\mathbb{R}_2[X]$.
- 3. On doit exprimer $f(P_1)$, $f(P_2)$, $f(P_3)$ dans la base \mathscr{B}' . Par le calcul, on trouve

$$f(P_1) = 3P_1;$$
 $f(P_2) = P_2;$ $f(P_3) = P_3$

Donc,
$$Mat_{\mathscr{B}'}(f) = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
.

4. Par la formule de changement de base, on sait qu'on a

$$\operatorname{Mat}_{\mathscr{B}}(f) = P.\operatorname{Mat}_{\mathscr{B}'}(f).P^{-1} \text{ où } P = P_{\mathscr{B}}^{\mathscr{B}'} = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 0 \\ -1 & 2 & -1 \end{pmatrix}$$

En passant à la puissance, on démontre par itération que

$$\operatorname{Mat}_{\mathscr{B}}(f^{n}) = \operatorname{Mat}_{\mathscr{B}}(f)^{n} = P.\left(\operatorname{Mat}_{\mathscr{B}'}(f)\right)^{n}.P^{-1} = P.\left(\begin{matrix} 3^{n} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix}\right).P^{-1}$$

$$= \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 0 \\ -1 & 2 & -1 \end{pmatrix}.\begin{pmatrix} 3^{n} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.\begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 0 \\ -1 & 2 & -1 \end{pmatrix}.\begin{pmatrix} 3^{n} & -3^{n} & 3^{n} \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 3^{n} & -3^{n} + 1 & 3^{n} - 1 \\ -3^{n} + 1 & 3^{n} & -3^{n} + 1 \\ -3^{n} + 1 & 3^{n} - 1 & -3^{n} + 2 \end{pmatrix}$$

Par conséquent, pour tout $P = a_0 + a_1 X + a_2 X^2 \in \mathbb{R}_2[X]$,

$$f^{n}(P) = f^{n}(a_{0} + a_{1}X + a_{2}X^{2})$$

$$= a_{0}f^{n}(1) + a_{1}f^{n}(X) + a_{2}f^{n}(X^{2})$$

$$= 3^{n}(a_{0} - a_{1} + a_{2}) + a_{1} - a_{2} + (3^{n}(-a_{0} + a_{1} - a_{2}) + a + a_{2})X + (3^{n}(-a_{0} + a_{1} - a_{2}) + a - a_{1} + 2a_{2})X^{2}$$