Chapitre 16 : Développements limités

\bigstar \bigstar Obtenir un équivalent simple d'une combinaison linéaire à l'aide d'un développement limité.

Exercice 1 [Solution]

Montrer que $f: x \mapsto \frac{1}{x} - \frac{1}{\ln(1+x)}$ est prolongeable par continuité en 0.

Exercice 2 [Solution]

Pour tout $n \in \mathbb{N}^*$, notons $u_n = \frac{\operatorname{sh}(\frac{1}{n}) - \operatorname{tan}(\frac{1}{n})}{\operatorname{cos}(\frac{1}{n}) - \operatorname{ch}(\frac{1}{n})}$. Montrer que la suite (u_n) converge vers 0 par valeurs positives.

★ Bien manipuler les développements limité : produit, quotient, composée, substitution, ...

Exercice 3 [Solution]

Déterminer le développement limité de th $=\frac{\sinh}{ch}$ à l'ordre 5 en 0 en utilisant :

- 1. les développements limités de sh et ch;
- 2. le développement limité de exp;
- 3. la formule de Taylor-Young;
- 4. le fait que th' = $\frac{1}{ch^2}$;
- 5. le fait que $th' = 1 th^2$.
- 6. le fait que pour tout $x \in]-1,1[, (\th^{-1})'(x) = \frac{1}{1-x^2}$ et $\th(\th^{-1}(x)) = x$.
- \bigstar Mener une étude locale au voisinage de $a \neq 0$ en se ramenant en 0.

Exercice 4 [Solution]

Montrer que $f: x \mapsto \frac{1-x+\ln(x)}{1-\sqrt{2x-x^2}}$ admet une limite en 1 et déterminer celle-ci.

★ Utiliser le développement limité d'une fonction afin d'obtenir une information locale sur sa courbe représentative.

Exercice 5 [Solution]

Considérons $f: x \mapsto \frac{x^2}{\sinh(x)}$.

- 1. Montrer que f se prolonge en une fonction continue sur \mathbb{R} .
- 2. Montrer que ce prolongement est de classe \mathscr{C}^1 .
- 3. Déterminer l'allure de la courbe représentative de f au voisinage de 0.
- \star Déterminer le développement asymptotique d'une fonction au voisinage de $\pm \infty$ afin d'étudier les branches infinies.

Exercice 6 [Solution]

Montrer que $f: x \mapsto \frac{x \operatorname{ch}(x) - \operatorname{sh}(x)}{\operatorname{ch}(x) - 1}$ admet une asymptote affine en $+\infty$ puis déterminer la position relative de la courbe représentative de f par rapport à cette asymptote.

★ Déterminer le développement asymptotique d'une suite définie implicitement ou par récurrence.

Exercice 7 [Solution]

- 1. Pour tout $n \in \mathbb{N}$, montrer que l'équation $\tan(x) = x$ admet une unique solution dans l'intervalle $]-\frac{\pi}{2}+n\pi, \frac{\pi}{2}+n\pi[$. On notera x_n cette unique solution.
- 2. A l'aide d'un encadrement, déterminer un équivalent simple de la suite (x_n) .
- 3. Perfectionner votre résultat en montrant que $x_n = n\pi + \frac{\pi}{2} + o(1)$.
- 4. En utilisant le fait que $\operatorname{Arctan}(x) + \operatorname{Arctan}\left(\frac{1}{x}\right) = \frac{\pi}{2}$ pour tout $x \in \mathbb{R}_+^*$, déterminer un développement asymptotique à trois termes pour la suite (x_n) .

Correction des exercices

Exercice 1 [Enoncé]

La fonction f est continue sur $]-1;+\infty[\setminus\{0\}]$. Pour tout $x \in]-1;+\infty[\setminus\{0\}]$, $f(x) = \frac{\ln(1+x)-x}{x\ln(1+x)}$. Or $x\ln(1+x) \underset{x\to 0}{\sim} x^2$ et $\ln(1+x)-x=-\frac{x^2}{2}+o(x^2)$ donc $\ln(1+x)-x\underset{x\to 0}{\sim} -\frac{x^2}{2}$. D'où $f(x) \underset{x\to 0}{\sim} -\frac{1}{2}$ d'où D'où $f(x) \underset{x\to 0}{\longrightarrow} -\frac{1}{2}$.

Donc $f: x \mapsto \frac{1}{x} - \frac{1}{\ln(1+x)}$ est prolongeable par continuité en 0 en posant $f(0) = -\frac{1}{2}$

Exercice 2 [Enoncé]

On a $\operatorname{sh}(\frac{1}{n}) - \tan(\frac{1}{n}) = \left(\frac{1}{n} + \frac{1}{6n^3} + o\left(\frac{1}{n^3}\right)\right) - \left(\frac{1}{n} + \frac{1}{3n^3} + o\left(\frac{1}{n^3}\right)\right) = -\frac{1}{6n^3} + o\left(\frac{1}{n^3}\right)$ d'où $\operatorname{sh}(\frac{1}{n}) - \tan(\frac{1}{n}) \sim -\frac{1}{6n^3}$. Par ailleurs, $\cos(\frac{1}{n}) - \operatorname{ch}(\frac{1}{n}) = \left(1 - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)\right) - \left(1 + \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)\right) = -\frac{1}{n^2} + o\left(\frac{1}{n^2}\right)$ d'où $\cos(\frac{1}{n}) - \operatorname{ch}(\frac{1}{n}) \sim -\frac{1}{n^2}$.

$$\frac{\operatorname{sh}(\frac{1}{n}) - \operatorname{tan}(\frac{1}{n})}{\operatorname{cos}(\frac{1}{n}) - \operatorname{ch}(\frac{1}{n})} \sim \frac{-\frac{1}{6n^3}}{-\frac{1}{n^2}} \sim \frac{1}{6n} \,.$$

Par conséquent $u_n \sim \frac{1}{6n}$. Comme les équivalents préservent les limites et les signes, (u_n) converge vers 0 par valeurs positives.

Exercice 3 [Enoncé]

1.

$$\begin{aligned} \operatorname{th}(x) &\underset{x \to 0}{=} \left(x + \frac{x^3}{6} + \frac{x^5}{120} + o\left(x^5\right) \right) \frac{1}{1 + \frac{x^2}{2} + \frac{x^4}{24} + o\left(x^4\right)} \\ &\underset{x \to 0}{=} \left(x + \frac{x^3}{6} + \frac{x^5}{120} + o\left(x^5\right) \right) \left(1 - \left(\frac{x^2}{2} + \frac{x^4}{24} + o\left(x^4\right) \right) + \left(\frac{x^2}{2} + \frac{x^4}{24} + o\left(x^4\right) \right)^2 + o(x^4) \right) \\ &\underset{x \to 0}{=} \left(x + \frac{x^3}{6} + \frac{x^5}{120} + o\left(x^5\right) \right) \left(1 - \frac{x^2}{2} + \frac{5x^4}{24} + o\left(x^4\right) \right) \\ &\underset{x \to 0}{=} x - \frac{1}{3}x^3 + \frac{2}{15}x^5 + o\left(x^5\right) \end{aligned}$$

2. Pour tout $x \in \mathbb{R}$, $th(x) = \frac{1 - e^{-2x}}{1 + e^{-2x}} = -1 + \frac{2}{1 + e^{-2x}}$.

$$\begin{aligned} & \text{th}(x) \underset{x \to 0}{=} -1 + \frac{2}{2 + (-2x) + \frac{(-2x)^2}{2} + \frac{(-2x)^3}{6} + \frac{(-2x)^4}{24} + \frac{(-2x)^5}{120} + o\left(x^5\right)} \\ & \stackrel{=}{=} -1 + \frac{1}{1 - \left(x - x^2 + \frac{2}{3}x^3 - \frac{1}{3}x^4 + \frac{2}{15}x^5 + o\left(x^5\right)\right)} \\ & \stackrel{=}{=} \left(x - x^2 + \frac{2}{3}x^3 - \frac{1}{3}x^4 + \frac{2}{15}x^5 + o\left(x^5\right)\right) + \left(x - x^2 + \frac{2}{3}x^3 - \frac{1}{3}x^4 + \frac{2}{15}x^5 + o\left(x^5\right)\right)^2 \\ & + \left(x - x^2 + \frac{2}{3}x^3 - \frac{1}{3}x^4 + \frac{2}{15}x^5 + o\left(x^5\right)\right)^3 + \left(x - x^2 + \frac{2}{3}x^3 - \frac{1}{3}x^4 + \frac{2}{15}x^5 + o\left(x^5\right)\right)^4 \\ & + \left(x - x^2 + \frac{2}{3}x^3 - \frac{1}{3}x^4 + \frac{2}{15}x^5 + o\left(x^5\right)\right)^5 + o(x^5) \\ & \stackrel{=}{=} x + (-1 + 1)x^2 + \left(\frac{2}{3} - 2 + 1\right)x^3 + \left(-\frac{1}{3} + \frac{4}{3} + 1 - 3 + 1\right)x^4 \\ & + \left(\frac{2}{15} - \frac{2}{3} - \frac{4}{3} + 2 + 3 - 4 + 1\right)x^5 + o\left(x^5\right) \\ & \stackrel{=}{=} x - \frac{1}{3}x^3 + \frac{2}{15}x^5 + o\left(x^5\right) \end{aligned}$$

3. La fonction the est de classe \mathscr{C}^{∞} sur \mathbb{R} par quotient de fonctions de classe \mathscr{C}^{∞} dont le dénominateur ne s'annule pas. Pour tout $x \in \mathbb{R}$,

$$th'(x) = 1 - th^2(x), \quad th''(x) = -2th'(x)th(x) = -2th(x) + 2th^3(x), \quad th^{(3)}(x) = -2th'(x) + 6th'(x)th^2(x)$$

i.e.
$$th^{(3)}(x) = -2 + 8th^2(x) - 6th^4(x)$$
. d'où

$$th^{(4)}(x) = 16th'(x)th(x) - 18th'(x)th^{3}(x) = 16th(x) - 34th^{3}(x) + 18th^{5}(x),$$

D'où

$$th^{(5)}(x) = 16th'(x) - 102th'(x)th^{2}(x) + 18th'(x)th^{4}(x).$$

Par conséquent,

$$th(0) = 0$$
, $th'(0) = 1$, $th''(0) = 0$, $th^{(3)}(0) = -2$, $th^{(4)}(0) = 0$, $th^{(5)}(0) = 16$.

D'après la formule de Taylor-Young,

$$th(x) = th(0) + th'(0)x + \frac{th''(0)}{2}x^2 + \frac{th^{(3)}(0)}{6}x^3 + \frac{th^{(4)}(0)}{24}x^4 + \frac{th^{(5)}(0)}{120}x^5 + o(x^5)$$

$$= x - \frac{1}{3}x^3 + \frac{2}{15}x^5 + o(x^5)$$

4. On a

$$\operatorname{ch}^{2}(x) \underset{x \to 0}{=} \left(1 + \frac{x^{2}}{2} + \frac{x^{4}}{24} + o\left(x^{4}\right)\right)^{2}$$
$$\underset{x \to 0}{=} 1 + x^{2} + \frac{7x^{4}}{12} + o\left(x^{4}\right).$$

D'où

$$th'(x) = \frac{1}{\cosh^2(x)} \stackrel{=}{\underset{x \to 0}{=}} \frac{1}{1 + \left(x^2 + \frac{x^4}{3} + o\left(x^4\right)\right)}$$

$$\stackrel{=}{\underset{x \to 0}{=}} 1 - \left(x^2 + \frac{x^4}{3} + o\left(x^4\right)\right) + \left(x^2 + \frac{x^4}{3} + o\left(x^4\right)\right)^2 + o\left(x^4\right)$$

$$\stackrel{=}{\underset{x \to 0}{=}} 1 - x^2 + \frac{2x^4}{3} + o\left(x^4\right).$$

Par primitivation, on obtient $\operatorname{th}(x) = \operatorname{th}(0) + x - \frac{1}{3}x^3 + \frac{2}{15}x^5 + o(x^5)$.

5. Par quotient, $\operatorname{th}(x) \underset{x \to 0}{\sim} x$ d'où $\operatorname{th}^2(x) \underset{x \to 0}{\sim} x^2$.

Autrement dit th²(x) =
$$x \to 0$$
 $x \to 0$ i.e. th'(x) = 1 - th²(x) = $x \to 0$ 1 - $x \to 0$ - $x \to 0$

Par primitivation, $\operatorname{th}(x) = \int_{x\to 0}^{x\to 0} \operatorname{th}(0) + x - \frac{1}{3}x^3 + o(x^3)$.

Ainsi
$$\operatorname{th}^2(x) = \left(x - \frac{1}{3}x^3 + o(x^3)\right)^2 = x^2 - \frac{2}{3}x^4 + o(x^4)$$
 i.e. $\operatorname{th}'(x) = 1 - \operatorname{th}^2(x) = 1 - \operatorname{th}^$

Cette dernière méthode est de loin la meilleure. En effet, les calculs sont simples et on peut aisément déterminer le développement limité à un ordre supérieur.

6. Pour tout $x \in]-1,1[, (th^{-1})'(x) = \frac{1}{1-x^2}$ d'où $(th^{-1})'(x) = 1+x^2+x^4+o(x^4)$ et donc

$$(\tanh^{-1})(x) \underset{x\to 0}{=} x + \frac{x^3}{3} + \frac{x^5}{5} + o(x^5)$$

Comme th est une fonction impaire de classe \mathscr{C}^{∞} , il existe $a,b,c\in\mathbb{R}$ tels que $\operatorname{th}(x)=ax+bx^3+cx^5+o(x^5)$. Par conséquent,

$$\operatorname{th}(\operatorname{th}^{-1}(x)) \underset{x \to 0}{=} a \left(x + \frac{x^3}{3} + \frac{x^5}{5} + o(x^5) \right) + b \left(x + \frac{x^3}{3} + \frac{x^5}{5} + o(x^5) \right)^3 + \left(x + \frac{x^3}{3} + \frac{x^5}{5} + o(x^5) \right)^5 + o(x^5)$$

$$\underset{x \to 0}{=} ax + \left(\frac{a}{3} + b \right) x^3 + \left(\frac{a}{5} + b + c \right) x^5 + o(x^5)$$

$$\text{Or th}(\text{th}^{-1}(x)) = x \text{ pour tout } x \in]-1,1[. \text{ Par unicit\'e du d\'eveloppement limit\'e}, \begin{cases} a=1\\ \frac{a}{3}+b=0\\ \frac{a}{5}+b+c=0 \end{cases} \text{ i.e. } \begin{cases} a=1\\ b=-\frac{1}{3}\\ c=\frac{2}{15} \end{cases} .$$

Conclusion: th(x) = $x - \frac{1}{3}x^3 + \frac{2}{15}x^5 + o(x^5)$.

Exercice 4 [Enoncé]

$$f(1+h) = \frac{1 - (1+h) + \ln(1+h)}{1 - \sqrt{2(1+h) - (1+h)^2}} = \frac{-h + \ln(1+h)}{1 - \sqrt{1-h^2}} \underset{h \to 0}{=} \frac{-h + (h - \frac{h^2}{2} + o(h^2))}{1 - (1 + \frac{1}{2}(-h^2) + o(h^2))} \underset{h \to 0}{=} \frac{-\frac{h^2}{2} + o(h^2)}{\frac{h^2}{2} + o(h^2)} \underset{h \to 0}{=} \frac{-1 + o(1)}{1 + o(1)}.$$

$$\text{Donc } f(1+h) \underset{h \to 0}{\longrightarrow} -1 \text{ i.e. } f(x) \underset{x \to 1}{\longrightarrow} -1.$$

Exercice 5 [Enoncé]

Considérons $f: x \mapsto \frac{x^2}{\sinh(x)}$.

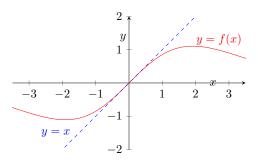
- 1. La fonction f est de classe \mathscr{C}^{∞} sur \mathbb{R}^* car quotient de fonction de classe \mathscr{C}^{∞} dont le dénominateur s'annule uniquement en 0. De plus, $\frac{x^2}{\sinh(x)} \underset{x \to 0}{\sim} x$. Donc $f(x) \underset{x \to 0}{\longrightarrow} 0$. Par conséquent, f se prolonge en une fonction continue sur \mathbb{R} en posant f(0) = 0.
- 2. Pour tout $x \in \mathbb{R}_*$, $f'(x) = \frac{2x \operatorname{sh}(x) x^2 \operatorname{ch}(x)}{\operatorname{sh}^2(x)}$. Or $2x \operatorname{sh}(x) x^2 \operatorname{ch}(x) = x^2 + o(x^2)$. D'où $f'(x) \approx x^2 \approx x^2 = x^2 + o(x^2)$. La fonction f est continue sur \mathbb{R} , dérivable sur \mathbb{R}^* et $f'(x) \xrightarrow[x \to 0]{} 1$.

D'après le théorème de la limite de la dérivée, f est de classe \mathscr{C}^1 en 0 et donc f est de classe \mathscr{C}^1 sur \mathbb{R} .

3. On a

$$f(x) \underset{x \to 0}{=} \frac{x^2}{x + \frac{x^3}{6} + o(x^3)} \underset{x \to 0}{=} \frac{x}{1 + \frac{x^2}{6} + o(x^2)}$$
$$\underset{x \to 0}{=} x \left(1 - \left(\frac{x^2}{6} + o(x^2) \right) + o(x^2) \right)$$
$$\underset{x \to 0}{=} x - \frac{x^3}{6} + o(x^3)$$

Ainsi $f(x) - x \sim \frac{x^3}{6}$. Par conséquent, la courbe représentative de f se situe au dessus (resp. au dessous) de la tangente d'équation y = x au voisinage de 0 à gauche (resp. à droite).



Exercice 6 [Enoncé]

<u>Première méthode</u>: Déterminons pas à pas un développement asymptotique de f en $+\infty$.

On a $x \operatorname{ch}(x) \underset{x \to +\infty}{\sim} \frac{1}{2} x e^x$ et $\operatorname{sh}(x) \underset{x \to +\infty}{\sim} \frac{1}{2} e^x = o\left(x e^x\right)$ donc $x \operatorname{ch}(x) - \operatorname{sh}(x) \underset{x \to +\infty}{\sim} \frac{1}{2} x e^x$. Par ailleurs, $\operatorname{ch}(x) - 1 \underset{x \to +\infty}{\sim} \frac{1}{2} e^x$. D'où $f(x) = \frac{x \operatorname{ch}(x) - \operatorname{sh}(x)}{\operatorname{ch}(x) - 1} \underset{x \to +\infty}{\sim} x$ i.e. f(x) = x + o(x)

Cherchons à présent un équivalent de $x \mapsto f(x) - x$ en $+\infty$

$$f(x) - x = \frac{x \operatorname{ch}(x) - \operatorname{sh}(x) - x(\operatorname{ch}(x) - 1)}{\operatorname{ch}(x) - 1} = \frac{-\operatorname{sh}(x) + x}{\operatorname{ch}(x) - 1} \sim \frac{-\frac{1}{2}e^x}{\frac{1}{2}e^x} = -1$$

Par conséquent, f(x) = x - 1 + o(1) et donc la courbe représentative de f admet, au voisinage de $+\infty$, une asymptote d'équation y = x - 1.

Cherchons à présent le signe de $x \mapsto f(x) - (x-1)$ afin de connaître la position de la courbe par rapport à cette asymptote au voisinage de $+\infty$.

$$f(x) - x + 1 = \frac{\operatorname{ch}(x) - \operatorname{sh}(x) + x - 1}{\operatorname{ch}(x) - 1} = \frac{\operatorname{e}^{-x} + x - 1}{\operatorname{ch}(x) - 1} \underset{x \to +\infty}{\sim} \frac{x}{\frac{1}{2} e^x} = 2x \operatorname{e}^{-x}$$

La fonction $x \mapsto f(x) - (x-1)$ est positive au voisinage de $+\infty$ donc la courbe représentative de f est au dessus de l'asymptote d'équation y = x - 1.

Au passage, nous avons déterminé un développement asymptotique à trois termes de f en $+\infty$:

$$f(x) = x - 1 + 2xe^{-x} + o(xe^{-x})$$

<u>Deuxième méthode</u>: Déterminons directement un développement asymptotique de f en $+\infty$.

$$f(x) = \frac{x \operatorname{ch}(x) - \operatorname{sh}(x)}{\operatorname{ch}(x) - 1}$$

$$= \frac{x - \operatorname{th}(x)}{1 - \frac{1}{\operatorname{ch}(x)}}$$

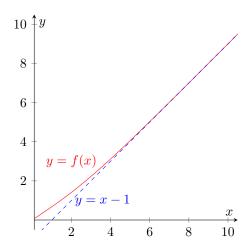
$$= \left(x - \frac{1 - e^{-2x}}{1 + e^{-2x}}\right) \frac{1}{1 - \frac{1}{\operatorname{ch}(x)}}$$

$$\stackrel{=}{\underset{x \to +\infty}{=}} \left(x - \left(1 - e^{-2x}\right) \left(\left(1 - e^{-2x} + o\left(e^{-2x}\right)\right)\right) \left(1 + \frac{1}{\operatorname{ch}(x)} + o\left(\frac{1}{\operatorname{ch}(x)}\right)\right)$$

$$\stackrel{=}{\underset{x \to +\infty}{=}} \left(x - 1 + 2e^{-2x} + o\left(e^{-2x}\right)\right) \left(1 + \frac{1}{\operatorname{ch}(x)} + o\left(\frac{1}{\operatorname{ch}(x)}\right)\right)$$

$$\stackrel{=}{\underset{x \to +\infty}{=}} x - 1 + \frac{x}{\operatorname{ch}(x)} + o\left(\frac{x}{\operatorname{ch}(x)}\right)$$

Par conséquent, au voisinage de $+\infty$, la courbe représentative de f admet une asymptote d'équation y = x - 1 et la courbe se situe au dessus de cette asymptote.



Exercice 7 [Enoncé]

- 1. Soit $n \in \mathbb{N}$. La fonction $f: x \mapsto \tan(x) x$ est continue et strictement croissante sur l'intervalle $] \frac{\pi}{2} + n\pi, \frac{\pi}{2} + n\pi[$ et $f(] \frac{\pi}{2} + n\pi, \frac{\pi}{2} + n\pi[) = \mathbb{R}$. Donc f est bijective de $] \frac{\pi}{2} + n\pi, \frac{\pi}{2} + n\pi[$ dans \mathbb{R} . D'où 0 admet un unique antécédent par f. Conclusion: l'équation $\tan(x) = x$ admet une unique solution dans l'intervalle $] \frac{\pi}{2} + n\pi, \frac{\pi}{2} + n\pi[$ que l'on note x_n .
- 2. Pour tout $n \in \mathbb{N}$, $-\frac{\pi}{2} + n\pi \leqslant x_n \leqslant \frac{\pi}{2} + n\pi$. Par conséquent, $x_n \sim n\pi$.
- 3. Soit $n \in \mathbb{N}$, on s'intéresse à la quantité $x_n n\pi$. On a $\tan(x_n n\pi) = \tan(x_n) = x_n$. De plus, $x_n n\pi \in]-\frac{\pi}{2}, \frac{\pi}{2}[$. D'où $x_n n\pi = \operatorname{Arctan}(x_n) \longrightarrow \frac{\pi}{2}$. On a donc : $x_n = n\pi + \frac{\pi}{2} + o(1)$.
- 4. Soit $n \in \mathbb{N}^*$, on s'intéresse à la quantité $x_n n\pi \frac{\pi}{2}$. On a $x_n - n\pi - \frac{\pi}{2} = \operatorname{Arctan}(x_n) - \frac{\pi}{2} = -\operatorname{Arctan}(\frac{1}{x_n}) \sim -\frac{1}{x_n} \sim -\frac{1}{n\pi}$. D'où $x_n = n\pi + \frac{\pi}{2} - \frac{1}{n\pi} + o\left(\frac{1}{n}\right)$.