Chapitre 15 : Relations de comparaison

\bigstar \bigstar Lever des indéterminées dans une limite à l'aide d'équivalents.

Exercice 1 [Solution]

Étudier la dérivabilité de $f: x \mapsto \operatorname{sh}(\sqrt{x})$.

Exercice 2 [Solution]

Pour tout $n \in \mathbb{N}^*$, notons $u_n = \left(1 + \frac{1}{n}\right)^n$. Montrer que la suite (u_n) converge et déterminer sa limite.

★ Déterminer le signe d'une fonction au voisinage d'un point à l'aide d'un équivalent.

Exercice 3 [Solution]

- 1. Montrer que la fonction $f: x \mapsto \frac{2x^5 + x^4 x^3 \ln^2(x)}{x^4 + 1}$ admet une asymptote affine en $+\infty$.
- 2. Déterminer la position de la courbe représentative de f par rapport à cette asymptote au voisinage de $+\infty$.

\bigstar Mener une étude locale au voisinage de $a \neq 0$ en se ramenant en 0.

Exercice 4 [Solution]

Montrer que $f: x \mapsto \frac{\ln(x)}{\cos(\frac{\pi}{\alpha}x)}$ admet une limite en 1 et déterminer celle-ci.

★ Obtenir un équivalent par encadrement.

Exercice 5 [Solution]

Soit
$$n \in \mathbb{N}^*$$
, notons $H_n = \sum_{k=1}^n \frac{1}{k}$.

- 1. Montrer que pour tout $k \in \mathbb{N}^*$, $\int_k^{k+1} \frac{1}{t} dt \leq \frac{1}{k}$. En déduire une minoration de H_n .
- 2. Montrer que pour tout $k \in [2, +\infty[$, $\frac{1}{k} \le \int_{k-1}^{k} \frac{1}{t} dt$. En déduire une majoration de H_n .
- 3. Déterminer un équivalent simple de (H_n) .

★ Comparer des vitesses de convergence.

Exercice 6 [Solution]

Soit $a \in [1, +\infty[$. On note $(u_n)_{n \in \mathbb{N}}$ la suite définie par $u_0 = a$ et $\forall n \in \mathbb{N}, u_{n+1} = \frac{1}{2} \left(u_n + \frac{a}{u_n} \right)$.

- 1. Montrer que la suite (u_n) est bien définie et que $u_n > 0$ pour tout $n \in \mathbb{N}$.
- 2. On pose $v_n = \frac{u_n \sqrt{a}}{u_n + \sqrt{a}}$ pour tout $n \in \mathbb{N}$. Montrer, que pour tout $n \in \mathbb{N}$, $v_{n+1} = v_n^2$ puis déterminer une expression explicite de la suite (v_n) .
- 3. En déduire que (u_n) converge vers \sqrt{a} et que $u_n \sqrt{a} \sim 2\sqrt{a} \left(\frac{\sqrt{a}-1}{\sqrt{a}+1}\right)^{2^n}$.
- 4. On rappelle que, si (w_n) est une suite approximant \sqrt{a} par dichotomie alors $|w_n \sqrt{a}| \leq \frac{1}{2^n} |w_0 \sqrt{a}|$ pour tout $n \in \mathbb{N}$. Comparer les deux vitesses de convergences.

Cette méthode puissante de calcul des valeurs approchées d'une racine carrée est appelée la méthode de Héron.

Correction des exercices

Exercice 1 Enoncé

Par composition, f est définie et continue sur \mathbb{R}_+ et dérivable sur \mathbb{R}_+^* . Il reste à étudier la dérivabilité en 0. On a $\frac{\sinh(\sqrt{x})-\sinh(0)}{x-0} \sim \frac{\sqrt{x}}{x} \sim \frac{1}{\sqrt{x}} \longrightarrow +\infty$. Donc f n'est pas dérivable en 0.

Soit
$$n \in \mathbb{N}^*$$
. $\left(1 + \frac{1}{n}\right)^n = \exp\left(n\ln\left(1 + \frac{1}{n}\right)\right)$. Or, $\ln\left(1 + \frac{1}{n}\right) \sim \frac{1}{n}$ donc, par produit, $n\ln\left(1 + \frac{1}{n}\right) \sim 1$.

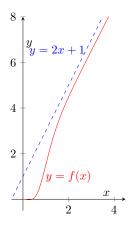
Comme les équivalents préservent les limites, $\lim_{n \to +\infty} n \ln \left(1 + \frac{1}{n}\right) = 1$.

Par continuité de la fonction exponentielle, $\lim_{n\to+\infty} \left(1+\frac{1}{n}\right)^n = \exp(1) = e$. Donc la suite (u_n) converge vers e.

Exercice 3 Enoncé

- 1. On a $f(x) \underset{x \to +\infty}{\sim} \frac{2x^5}{x^4} \underset{x \to +\infty}{\sim} 2x$ et $f(x) 2x = \frac{x^4 x^3 \ln^2(x) 2x}{x^4 + 1} \underset{x \to +\infty}{\sim} \frac{x^4}{x^4} \underset{x \to +\infty}{\sim} 1$. D'où $f(x) (2x + 1) \underset{x \to +\infty}{\longrightarrow} 0$ i.e. f admet une asymptote affine en $+\infty$ d'équation y = 2x + 1.
- $2. \ f(x) (2x+1) = \frac{-x^3 \ln^2(x) 2x 1}{x^4 + 1} \underset{x \to +\infty}{\sim} \frac{-x^3 \ln^2(x)}{x^4} \underset{x \to +\infty}{\sim} -\frac{\ln^2(x)}{x}.$ Comme les équivalents préservent les signes, f(x) (2x+1) < 0 pour x au voisinage de $+\infty$. Par conséquent,

la courbe représentative de f est au-dessous de l'asymptote y=2x+1 au voisinage de $+\infty$.



Exercice 4 [Enoncé] On a
$$f(1+h) = \frac{\ln(x)}{\cos(\frac{\pi}{2}x)} = \frac{\ln(1+h)}{\cos(\frac{\pi}{2}+\frac{\pi}{2}h)} = \frac{\ln(1+h)}{-\sin(\frac{\pi}{2}h)} \sim \frac{h}{h\to 0} -\frac{2}{\pi} \text{ donc } f(1+h) \xrightarrow[h\to 0]{} -\frac{2}{\pi} \text{ i.e. } f(x) \xrightarrow[x\to 1]{} -\frac{2}{\pi}.$$

Exercice 5 Enoncé

Soit $n \in \mathbb{N}^*$, notons $H_n = \sum_{k=1}^n \frac{1}{k}$.

1. Soit $k \in \mathbb{N}^*$. $\forall t \in [k, k+1], \frac{1}{t} \leqslant \frac{1}{k}$. Par croissance de l'intégrale, $\int_{L}^{k+1} \frac{1}{t} dt \leqslant \int_{L}^{k+1} \frac{1}{k} dt = \frac{1}{k}$. Par conséquent,

$$H_n = \sum_{k=1}^n \frac{1}{k} \ge \sum_{k=1}^n \int_k^{k+1} \frac{1}{t} dt = \int_1^{n+1} \frac{1}{t} dt = \ln(n+1).$$

2. Soit $k \in [2, +\infty[$, $\forall t \in [k-1, k], \frac{1}{t} \geqslant \frac{1}{k}$. Par croissance de l'intégrale, $\int_{k-1}^{k} \frac{1}{t} dt \geqslant \int_{k-1}^{k} \frac{1}{k} dt = \frac{1}{k}$. Par conséquent,

$$H_n = \sum_{k=1}^n \frac{1}{k} \le 1 + \sum_{k=2}^n \int_{k-1}^k \frac{1}{t} dt = 1 + \int_1^n \frac{1}{t} dt = 1 + \ln(n).$$

3. $\forall n \in \mathbb{N}^*, \ln(n+1) \leqslant H_n \leqslant 1 + \ln(n)$. De plus, $1 + \ln(n) \sim \ln(n+1) \sim \ln(n)$. Ainsi $H_n \sim \ln(n)$ par encadrement.

Exercice 6 Enoncé

Soit $a \in [1, +\infty[$. On note $(u_n)_{n \in \mathbb{N}}$ la suite définie par $u_0 = a$ et $\forall n \in \mathbb{N}, \ u_{n+1} = \frac{1}{2} \left(u_n + \frac{a}{u_n} \right)$.

- 1. Notons $f: x \mapsto \frac{1}{2} \left(x + \frac{a}{x} \right)$ de sorte que $u_{n+1} = f(u_n)$ pour tout $n \in \mathbb{N}$. L'intervalle \mathbb{R}_+^* contient u_0 et c'est un intervalle inclus dans le domaine de définition de f qui est stable par f. Par conséquent, la suite (u_n) est bien définie et $u_n > 0$ pour tout $n \in \mathbb{N}$.
- 2. On pose $v_n = \frac{u_n \sqrt{a}}{u_n + \sqrt{a}}$ pour tout $n \in \mathbb{N}$. Soit $n \in \mathbb{N}$,

$$v_{n+1} = \frac{u_{n+1} - \sqrt{a}}{u_{n+1} + \sqrt{a}} = \frac{u_n + \frac{a}{u_n} - 2\sqrt{a}}{u_n + \frac{a}{u_n} + 2\sqrt{a}} = \frac{u_n^2 - 2\sqrt{a}u_n + a}{u_n^2 + 2\sqrt{a}u_n + a} = \frac{(u_n - \sqrt{a})^2}{(u_n + \sqrt{a})^2} = v_n^2,$$

par conséquent, $v_n = v_0^{2^n} = \left(\frac{a-\sqrt{a}}{a+\sqrt{a}}\right)^{2^n} = \left(\frac{\sqrt{a}-1}{\sqrt{a}+1}\right)^{2^n}$.

- 3. Comme $\left|\frac{\sqrt{a}-1}{\sqrt{a}+1}\right| < 1$, la suite v_n converge vers 0. Or, pour tout $n \in \mathbb{N}$, $u_n \sqrt{a} = (u_n + \sqrt{a})v_n$, donc (u_n) converge vers \sqrt{a} . On remarque que $u_n + \sqrt{a} \longrightarrow 2\sqrt{a}$ d'où $u_n + \sqrt{a} \sim 2\sqrt{a}$. Par conséquent, $u_n \sqrt{a} \sim 2\sqrt{a} \left(\frac{\sqrt{a}-1}{\sqrt{a}+1}\right)^{2^n}$.
- 4. On rappelle que, si (w_n) est une suite approximant \sqrt{a} par dichotomie alors $|w_n \sqrt{a}| \leq \frac{1}{2^n} |w_0 \sqrt{a}|$ pour tout $n \in \mathbb{N}$. En notant $q = \frac{\sqrt{a}-1}{\sqrt{a}+1}$, nous avons $|u_n \sqrt{a}| = O\left(q^{2^n}\right)$. Par ailleurs, $|w_n \sqrt{a}| = O\left(\frac{1}{2^n}\right)$. La suite (u_n) converge plus rapidement vers \sqrt{a} que la suite (w_n) car $q^{2^n} = o\left(\frac{1}{2^n}\right)$.