Devoir maison $n^{\circ 9}$ pour le mardi 27 février 2024

La copie doit être convenablement présentée et rédigée.

Les réponses doivent être justifiées.

Chaque question doit être traitée avec un souci de rigueur et de clarté.

Les résultats essentiels seront encadrés.

Polynômes de Tchebychev de seconde espèce

Soit $(P_n)_{n\in\mathbb{N}}$ la suite de polynômes définie par :

$$\begin{cases} P_0 = 1 \\ P_1 = 2X \\ \forall n \in \mathbb{N}, \ P_{n+2} = 2XP_{n+1} - P_n \end{cases}$$

Les polynômes P_n sont appelés polynômes de Tchebychev de seconde espèce.

- 1. Calculer le polynôme P_4 , puis factoriser ce polynôme dans $\mathbb{R}[X]$.
- 2. Déterminer, pour tout entier naturel n, le degré ainsi que le coefficient dominant de P_n .
- 3. Soit $n \in \mathbb{N}$. Déterminer en fonction de n la parité de P_n .
- 4. Soient $n \in \mathbb{N}$ et $t \in \mathbb{R}$.
 - (a) Montrer que $\sin(nt) + \sin((n+2)t) = 2\cos(t)\sin((n+1)t)$.
 - (b) En déduire la relation : $\sin((n+1)t) = \sin(t)P_n(\cos(t))$.
- 5. Soit $n \in \mathbb{N}^*$. Montrer que l'ensemble des racines de P_n est $\left\{\cos\left(\frac{k\pi}{n+1}\right), k \in [\![1,n]\!]\right\}$. En déduire la décomposition de P_n en facteurs irréductibles dans $\mathbb{R}[X]$.
- 6. Calculer $\cos\left(\frac{\pi}{5}\right)$, $\cos\left(\frac{2\pi}{5}\right)$, $\cos\left(\frac{3\pi}{5}\right)$ et $\cos\left(\frac{4\pi}{5}\right)$ à l'aide du polynôme P_4 .
- 7. Soit $n \in \mathbb{N}^*$. On pose $p_n = \prod_{k=1}^n \cos\left(\frac{k\pi}{n+1}\right)$.
 - (a) Déterminer la valeur de $P_n(0)$, en distinguant suivant la parité de n.
 - (b) Calculer p_n . Ce résultat est-il en adéquation avec celui de la question 6?
- 8. Soit $n \in \mathbb{N}$.
 - (a) Montrer que pour tout $t \in \mathbb{R}$, on a :

$$\sin((n+1)t) = \sin(t) \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^k \binom{n+1}{2k+1} \cos^{n-2k}(t) (1 - \cos^2(t))^k$$

- (b) En déduire, en le justifiant soigneusement, une expression explicite du polynôme P_n . Ce résultat est-il en adéquation avec celui de la question 1?
- 9. Soient deux entiers naturels n et m. On considère l'intégrale suivante :

$$I_{n,m} = \int_{-1}^{1} P_n(x) P_m(x) \sqrt{1 - x^2} \, dx$$

Montrer que $I_{n,m} = \int_0^{\pi} \sin((n+1)t) \sin((m+1)t) dt$, puis en déduire la valeur explicite de $I_{n,m}$ en fonction des entiers n et m.

10. Soit $n \in \mathbb{N}$, justifier que $f_n : \begin{cases} [-1,1] \to \mathbb{R} \\ x \mapsto P_n(x) \end{cases}$ admet un maximum, puis déterminer celui-ci.