
Chapitre 28 : Fonctions de deux variables

Table des matières

1 Ouverts de R2 et fonctions continues 2
1.1 Ouverts de R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Fonctions continues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
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Dans tout ce chapitre, nous nous concentrerons sur les fonctions à deux
variables réelles, qui généralisent la notion de fonction d’une variable en
associant un unique réel à chaque paire de nombres réels. Ces fonctions
modélisent des phénomènes dans lesquels une quantité dépend de deux pa-
ramètres indépendants, comme la température en fonction du temps et de la
position, ou l’altitude selon la latitude et la longitude. L’objectif est de com-
prendre comment ces fonctions varient en fonction de chaque variable et d’en
analyser les comportements globaux. Les concepts de dérivées directionnelles,
dérivées partielles et gradient sont essentiels pour déterminer les points cri-
tiques de fonctions de deux variables et sont utilisés dans de nombreux do-
maines comme l’optimisation, la mécanique et la physique. Grâce à ces outils,
il est possible de détecter les points extremaux de ces fonctions.
Le mathématicien français Joseph Fourier a étudié des équations aux dérivées
partielles, des équations dont les inconnues sont des fonctions de plusieurs va-
riables, il s’est concentré principalement sur l’étude de la propagation de la
chaleur. Dans son ouvrage majeur, Théorie analytique de la chaleur (1822),
il introduit une méthode novatrice pour résoudre les équations aux dérivées
partielles en décomposant des fonctions en séries trigonométriques.

Joseph Fourier
(1761-1830)
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Dans tout le chapitre, R2 est muni du produit scalaire, de la norme et de la distance euclidienne.

1 Ouverts de R2 et fonctions continues

1.1 Ouverts de R2

Soit a ∈ R2 et r ∈ R∗
+.

La boule ouverte de centre a et de rayon r, notée B(a,r), est l’ensemble

des vecteurs de R2 dont la distance euclidienne à a est strictement
inférieure à r i.e.

B(a,r) = {b ∈ R2, ∥a− b∥ < r}.

r

a
�

Définition 1.1 (boule ouverte de R2)

Remarque : On peut définir de manière analogue la boule fermé de centre a et de rayon r par

B(a,r) = {b ∈ R2, ∥a− b∥ ⩽ r} .

Soit U une partie de R2. On dit que U est un ouvert si :

∀a ∈ U, ∃r > 0, B(a,r) ⊂ U.

Définition 1.2 (ouvert de R2)

Remarque : Intuitivement, une partie U est ouverte si U ne contient pas sa “frontière”.

Exemple 1.3 :

1. Montrer que le demi-plan H = {(x,y) ∈ R2, x > 0} est ouvert.

2. Montrer que le demi-plan H ′ = {(x,y) ∈ R2, x ⩾ 0} n’est pas ouvert.

3. Soit c ∈ R2 et R ∈ R∗
+. Montrer que la boule ouverte B(c,R) est ouverte.

1.2 Fonctions continues

Jusqu’à la fin du chapitre, U désignera un ouvert non vide de R2.

Notation : Soit f une fonction définie sur U et a = (x,y) ∈ U , on notera indifféremment f(x,y) ou f(a).

Soit f : U −→ R.
On appelle graphe de f le sous-ensemble de R3 suivant :

Γf = {(x,y,f(x,y)), (x,y) ∈ U}.
x

y
z

Définition 1.4 (graphe)
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Soient f : U −→ R, a ∈ U et ℓ ∈ R.
� On dit que f(b) −→

b→a
ℓ lorsque

∀ε > 0, ∃η > 0, ∀b ∈ U,

(
∥a− b∥ ⩽ η =⇒ |ℓ− f(b)| ⩽ ε

)
.

� On dit que f est continue en a si f(b) −→
b→a

f(a).

� On dit que f est continue si, pour tout a ∈ U , f est continue en a.

Définition 1.5 (fonction continue)

Vocabulaire : Les points b de R2 vérifiant ∥a− b∥ ⩽ η sont dits au voisinage de a. C’est l’analogue des voisinages
réels, en remplaçant la valeur absolue par la norme (et donc les intervalles [a − η,a + η] par les boules fermées
B(a,η) = {b ∈ R2, ∥a− b∥ ⩽ η}).

Exemple 1.6 : Montrez que les fonctions f1 : (x,y) 7−→ x et f2 : (x,y) 7−→ y sont continues sur R2.

Remarque : Attention, pour montrer qu’une fonction f de deux variables est continue en (x0,y0), il ne suffit pas
de montrer que les fonctions x 7→ f(x,y0) et y 7→ f(x0,y) sont continues respectivement en x0 et y0. (c.f. ex. 2.5)

Remarque : La caractérisation séquentielle de la continuité reste valable pour les fonctions définies sur R2.

Soient a ∈ U et f,g : U −→ R deux fonctions continues en a.

� Pour tout (λ1,λ2) ∈ R2, λ1f + λ2g est continue en a.

� Si f(a) ̸= 0, alors 1/f est continue en a.

� fg est continue en a.

� Si g(a) ̸= 0, alors f/g est continue en a.

Proposition 1.7 (stabilité par les opérations algébriques)

Soient f : U −→ R, I un intervalle contenant f(U) et g : I −→ R.
Si f est continue en a ∈ U et si g est continue en f(a), alors g ◦ f est continue en a.

Proposition 1.8 (composition à gauche)

Soient f : U −→ R, I un intervalle non vide de R et γ1,γ2 deux fonctions de I dans R telles que
γ : t 7−→ (γ1(t),γ2(t)) soit à valeurs dans U .
Si γ1 et γ2 sont continues en a ∈ I et f continue en γ(a), alors f ◦ γ : t 7−→ f(γ1(t),γ2(t)) est continue
en a.

Proposition 1.9 (composition à droite par une fonction d’une seule variable)

Soient V un ouvert non vide de R2, f : U −→ R et γ1,γ2 deux fonctions de V dans R telles que
γ : b 7−→ (γ1(b),γ2(b)) soit à valeurs dans U .
Si γ1 et γ2 sont continues en a ∈ V et f continue en γ(a), alors f ◦ γ : b 7−→ f(γ1(b),γ2(b)) est continue
en a.

Proposition 1.10 (composition à droite par une fonction de deux variables)
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2 Dérivées partielles

2.1 Définition

Soient f : U −→ R et a0 = (x0,y0) ∈ U .

� Si l’application partielle φ1 :

{
D1(y0) −→ R
x 7−→ f(x,y0)

définie sur D1(y0) = {x ∈ R, (x,y0) ∈ U},

est dérivable en x0, on dit que f admet une première dérivée partielle en (x0,y0) et on note :

∂1f(x0,y0) =
∂f

∂x
(x0,y0) = φ′

1(x0).

� Si l’application partielle φ2 :

{
D2(x0) −→ R
y 7−→ f(x0,y)

définie surD2(x0) = {y ∈ R, (x0,y) ∈ U},

est dérivable en y0, on dit que f admet une deuxième dérivée partielle en (x0,y0) et on note :

∂2f(x0,y0) =
∂f

∂y
(x0,y0) = φ′

2(y0).

Définition 2.1 (dérivées partielles)

Exemple 2.2 :

1. Calculer (si elles existent) les dérivées partielles de la fonction f : (x,y) 7→ 2x+ 4xy2 définie sur R2.

2. Soit U = {(x,y) ∈ R2, x > 0}. Calculer (si elles existent) les dérivées partielles de la fonction

f :

{
U −→ R

(x,y) 7−→ xy.
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Soient f,g deux fonctions de U dans R et a ∈ U .
Si f et g admettent des dérivées partielles en a, alors :

� pour tout (λ,µ) ∈ R2, λf + µg admet des dérivées partielles en a et :

∂(λf + µg)

∂x
(a) = λ

∂f

∂x
(a) + µ

∂g

∂x
(a) et

∂(λf + µg)

∂y
(a) = λ

∂f

∂y
(a) + µ

∂g

∂y
(a).

� fg admet des dérivées partielles en a et :

∂(fg)

∂x
(a) =

∂f

∂x
(a)g(a) + f(a)

∂g

∂x
(a) et

∂(fg)

∂y
(a) =

∂f

∂y
(a)g(a) + f(a)

∂g

∂y
(a).

� si g ne s’annule pas en a alors 1/g admet des dérivées partielles en a et :

∂(1/g)

∂x
(a) = −

∂g
∂x (a)

g2(a)
et

∂(1/g)

∂y
(a) = −

∂g
∂y (a)

g2(a)

� si g ne s’annule pas en a alors f/g admet des dérivées partielles en a et :

∂(f/g)

∂x
(a) =

∂f
∂x (a)g(a)− f(a) ∂g∂x (a)

g2(a)
et

∂(f/g)

∂y
(a) =

∂f
∂y (a)g(a)− f(a)∂g∂y (a)

g2(a)

Proposition 2.3 (opérations sur les dérivées partielles)

Exemple 2.4 : Soit f : R2 −→ R polynomiale, i.e. qu’il existe (m,n) ∈ N2 , (ai,j)(i,j)∈J1,mK×J1,nK tel que pour

tout (x,y) ∈ R2, f(x,y) =

m∑
i=0

n∑
j=0

ai,jx
iyj . Par produit et combinaison linéaire, f admet des dérivées partielles.

Attention : L’existence des dérivées partielles n’implique pas la continuité.

Exemple 2.5 : Soit f : R2 −→ R telle que f(0,0) = 0 et f(x,y) = xy
x2+y2 pour (x,y) ∈ R2\{(0,0)}.

Montrer que f admet des dérivées partielles en tout point de R2 mais n’est pas continue en (0,0).

x

y

z

Graphe de f

2.2 Fonctions de classe C 1 et gradient

Une fonction f : U −→ R est dite de classe C 1 si f admet des dérivées partielles en tout point de U et
si les fonctions ∂f

∂x et ∂f
∂y sont continues.

On note C 1(U,R) l’ensemble des fonctions de classe C 1 définies sur U à valeurs dans R.

Définition 2.6 (fonction de classe C 1)

Exemple 2.7 : Soit f : R2 −→ R polynomiale, alors f est de classe C 1.
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Soit f ∈ C 1(U,R).

On appelle gradient de f et on note ∇f l’application :

{
U −→ R2

a 7−→
(

∂f
∂x (a),

∂f
∂y (a)

)
.

Définition 2.8 (gradient)

Remarque : L’application ∇f prend ses valeurs dans R2, c’est un champ de vecteurs. On représente souvent de
telles fonctions dans le plan, en affichant pour de nombreux point a = (x,y), le vecteur ∇f(x,y) en prenant pour
origine le point a = (x,y).

Exemples 2.9 :

� Si f : (x,y) 7−→ αx+ βy + γ, alors ∇f : (x,y) 7−→ (α,β). Le gradient de f est constant.

x

y

z

Graphe de f .

x

y

Représentation du champ de vecteurs ∇f .

� Si f : (x,y) 7−→
√

1− x2 − y2 définie sur B(0,1), alors ∇f : (x,y) 7−→

(
−x√

1− x2 − y2
,

−y√
1− x2 − y2

)
.

x

y

z

Graphe de f . Représentation du champ de vecteurs ∇f .
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Soient f ∈ C 1(U,R) et a0 ∈ U .
Alors

f(a) =
a→a0

f(a0) + (∇f(a0)|a− a0) + o(∥a− a0∥),

Théorème 2.10 (développement limité d’ordre 1)

Remarques : Notons (x0,y0) les coordonnées de a0.
� Le théorème précédent affirme que la fonction affine

(x,y) 7−→ f(a0) + (x− x0)
∂f

∂x
(a0) + (y − y0)

∂f

∂y
(a0)

approche au premier ordre la fonction f au voisinage de a0.

� Le plan d’équation

z = f(a0) + (x− x0)
∂f

∂x
(a0) + (y − y0)

∂f

∂y
(a0)

qui est la graphe de cette fonction affine est appelé le plan tan-
gent du graphe de la fonction f en a0. Ce plan est, parmi tous
les plans, la meilleure approximation de la surface d’équation
z = f(x,y) au point a0.

�

x

y

z

� Le théorème précédent peut aussi s’écrire :

f(x0 + h,y0 + k) =
(h,k)→(0,0)

f(a0) + h
∂f

∂x
(a0) + k

∂f

∂y
(a0) + o(∥(h,k)∥).

Soit f ∈ C 1(U,R). Alors f est continue sur U .

Corollaire 2.11 (caractère C 1 implique la continuité)

Interprétation géométrique du gradient :

On a
f(a0 + v) =

v→(0,0)
f(a0) + (∇f(a0)|v) + o(∥v∥).

Justifions le fait que le gradient donne la direction dans laquelle f crôıt le plus vite.
Supposons que ∇f(a0) ̸= 0.
D’après l’inégalité de Cauchy-Schwarz : (∇f(a0)|v) ⩽ ∥∇f(a0)∥∥v∥, avec égalité si et seulement si v a le même
sens et la même direction que ∇f(a0) (c’est-à-dire s’ils sont positivement liés).
Donc l’approximation affine g : v 7−→ f(a0) + (∇f(a0)|v) de f en a0 est maximale pour v qui a même sens et
même direction que ∇f(a0) parmi l’ensemble des vecteurs v de même norme.

Soient f,g ∈ C 1(U,R).
� ∀(λ,µ) ∈ R2, λf + µg est de classe C 1 sur U .

� fg est de classe C 1 sur U .

� Si g ne s’annule pas sur U , alors 1/g est de classe C 1 sur U .

� Si g ne s’annule pas sur U , alors f/g est de classe C 1 sur U .

Proposition 2.12 (opérations algébriques sur les fonctions de classe C 1)
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3 Dérivées partielles et composées

3.1 Dérivée selon un vecteur

Soit f : U −→ R, a ∈ U et v ∈ R2.
Si φ : t 7→ f(a+ tv) est dérivable en 0, on dit que
f admet une dérivée en a selon le vecteur v et on
note :

Dvf(a) = φ′(0) = lim
t→0

f(a+ tv)− f(a)

t
.

�

a

#»v

�

x

y

z

Définition 3.1 (dérivée directionnelle)

Remarques :

� L’application φ : t 7→ f(a+ tv) est définie au voisinage de 0 car U est un ouvert.

� Pour v = (1,0), on a Dvf(a) =
∂f
∂x (a) et pour v = (0,1), on a Dvf(a) =

∂f
∂y (a).

Soit f ∈ C 1(U,R), a ∈ U et v = (h,k) ∈ R2.
Alors f admet une dérivée directionnelle en a selon le vecteur v et on a :

Dvf(a) = h
∂f

∂x
(a) + k

∂f

∂y
(a) = (∇f(a)|v).

Proposition 3.2 (le caractère C 1 implique l’existence des dérivées directionnelles)

Exemple 3.3 : Calculer la dérivée de l’application f : (x,y) 7→ x2 − y2 au point a = (1,2) suivant le vecteur
v = (3,5) de deux façons différentes.

Remarque : Attention, une fonction peut admettre une dérivée en un point selon n’importe quel vecteur sans
être même continue en ce point.

Exemple 3.4 :

Soit f :


R2 −→ R

(x,y) 7−→

{
y2

x pour x ̸= 0;

y sinon

.

Montrer que f admet des dérivées directionnelles en
(0,0) selon n’importe quel vecteur mais n’est pas conti-
nue en ce point.

x

y

z

3.2 Composition à gauche

Soit I un intervalle non trivial. Soit f ∈ C 1(U,R) telle que f(U) ⊂ I et g ∈ C 1(I,R).
Alors, g ◦ f ∈ C 1(U,R) et pour tout a ∈ U :

∂(g ◦ f)
∂x

(a) = g′(f(a))
∂f

∂x
(a) et

∂(g ◦ f)
∂y

(a) = g′(f(a))
∂f

∂y
(a).

Proposition 3.5 (composition à gauche et dérivation)
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3.3 Dérivée selon un chemin

Soient f ∈ C 1(U,R) et I un intervalle non trivial.

Soit γ :

{
I −→ R2

t 7−→ (γ1(t),γ2(t))
tel que γ1 et γ2 sont de classe C 1 et γ(I) ⊂ U .

Alors f ◦ γ : t 7−→ f(γ1(t),γ2(t)) est de classe C 1

et pour tout t ∈ I :

(f ◦ γ)′(t) = ∂f

∂x
(γ(t))γ′1(t) +

∂f

∂y
(γ(t))γ′2(t).

En notant γ′(t) = (γ′1(t),γ
′
2(t)), cette égalité s’écrit

(f ◦ γ)′(t) = (∇f(γ(t))|γ′(t))

La dérivée (f◦γ)′(t) s’appelle la dérivée de f selon l’arc γ en t.
�

γ(t)

γ′(t)

�

x

y

z

Théorème 3.6 (première règle de la châıne)

Remarques :

� La dérivée de f selon l’arc γ en t est égale à la dérivée de f en γ(t) selon le vecteur γ′(t).

� La conclusion du théorème peut se réécrire ∀t ∈ I, d
dt (f(γ1(t),γ2(t))) =

∂f
∂x (γ(t))γ

′
1(t) +

∂f
∂y (γ(t))γ

′
2(t).

Exemple 3.7 : Soit f ∈ C 1(R2,R). Montrer que la fonction g : t 7−→ f(t2,t3) est de classe C 1 et calculer sa
dérivée en fonction des dérivées partielles de f .

Interprétation géométrique du gradient avec les lignes de niveaux :

On appelle ligne de niveau d’une fonction f : U −→ R l’ensemble {(x,y) ∈ U, f(x,y) = c} où c ∈ R.
Si la fonction γ paramètre une ligne de niveau, c’est-à-dire si la fonction f ◦ γ est constante, alors sa dérivée est
nulle donc, pour tout t ∈ I, (∇f(γ(t))|γ′(t)) = 0 ; le gradient ∇f(γ(t)) est donc orthogonal au vecteur γ′(t) qui
dirige la tangente au point γ(t) de la ligne de niveau.
On dit que le gradient ∇f est orthogonal aux lignes de niveau.

Exemple 3.8 : Considérons f : (x,y) 7→ x2 + y2 et γ : t 7→ (r cos(t),r sin(t)) où r ∈ R+.
Montrer de deux manière différentes que (∇f(γ(t))|γ′(t)) = 0 pour tout t ∈ R.

3.4 Dérivée d’une fonction après un changement de variables

Soient f ∈ C 1(U,R) et V un ouvert non vide de R2.
Soient φ,ψ ∈ C 1(V,R) telles que Φ : (u,v) 7−→ (φ(u,v),ψ(u,v)) soit à valeurs dans U .

Alors, l’application f ◦Φ :

{
V −→ R

(u,v) 7−→ f(φ(u,v),ψ(u,v))
est de classe C 1 et pour tout (u,v) ∈ V :

�

∂(f ◦ Φ)
∂u

(u,v) =
∂f

∂x
(φ(u,v),ψ(u,v))

∂φ

∂u
(u,v) +

∂f

∂y
(φ(u,v),ψ(u,v))

∂ψ

∂u
(u,v) ;

�

∂(f ◦ Φ)
∂v

(u,v) =
∂f

∂x
(φ(u,v),ψ(u,v))

∂φ

∂v
(u,v) +

∂f

∂y
(φ(u,v),ψ(u,v))

∂ψ

∂v
(u,v).

Théorème 3.9 (deuxième règle de la châıne)

Remarque : Pour différentier les éléments de U et de V , on a noté (x,y) les éléments de U et (u,v) ceux de V .
On a donc noté ∂

∂x et ∂
∂y pour les dérivées partielles de fonctions définies sur U et ∂

∂u et ∂
∂v pour les dérivées

partielles de fonctions définies sur V . On peut toutefois écrire ce théorème uniquement avec x et y.
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Exemple 3.10 : Soit f ∈ C 1(R2,R). On définit g :

{
R∗

+ × R −→ R
(r,θ) 7−→ f(r cos(θ),r sin(θ))

.

Montrer que g est de classe C 1 et calculer ses dérivées partielles en fonction de celles de f .

4 Extremum et point critique

Soit V une partie non vide de R2 (pas forcément ouverte), f : V −→ R et a ∈ V .

� On dit que f admet un maximum en a si : ∀v ∈ V, f(v) ⩽ f(a).

� On dit que f admet un minimum en a si : ∀v ∈ V, f(v) ⩾ f(a).

� On dit que f admet un maximum local en a si : ∃η > 0,∀v ∈ V ∩B(a,η), f(v) ⩽ f(a).

� On dit que f admet un minimum local en a si : ∃η > 0,∀v ∈ V ∩B(a,η), f(v) ⩾ f(a).

� On dit que f admet un extremum en a si f admet un maximum ou un minimum en a.

� On dit que f admet un extremum local en a si f admet un maximum local ou un minimum local
en a.

Définition 4.1 (extremum)

Remarque : La condition ∃η > 0,∀v ∈ V ∩B(a,η) peut simplement se résumer par “au voisinage de a”. Lorsque
nous avons donné la notion de voisinage sur R, nous avons mis des inégalités larges mais la notion est équivalente
avec des inégalités strictes.

Soit f ∈ C 1(U,R) et a ∈ U .
On dit que a est un point critique de f si ∂f

∂x (a) =
∂f
∂y (a) = 0, c’est-à-dire si ∇f(a) = 0.

Définition 4.2 (point critique)

Soit f ∈ C 1(U,R) et a ∈ U .
Si f admet un extremum local en a, alors a est un point critique de f .

Théorème 4.3 (condition nécessaire pour un extremum local)

Remarques :

� Ce résultat permet de connâıtre les extrema locaux possibles en résolvant l’équation ∇f(a) = 0. Il faut
ensuite les étudier cas par cas (et étudier la fonction sur le bord du domaine si celui-ci n’est pas un ouvert).

� Attention la réciproque est fausse.

Exemple 4.4 : Soient f : (x,y) 7−→ x2 + y2 et g : (x,y) 7−→ x2 − y2 définies sur R2.

x

y

z

Graphe de f .

x

yz

Graphe de g.

Étudier les extrema de f et de g.
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