Chapitre 28 : Fonctions de deux variables
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Dans tout ce chapitre, nous nous concentrerons sur les fonctions a deux
variables réelles, qui généralisent la notion de fonction d’une variable en
associant un unique réel a chaque paire de nombres réels. Ces fonctions
modélisent des phénomeénes dans lesquels une quantité dépend de deux pa-
rametres indépendants, comme la température en fonction du temps et de la
position, ou l'altitude selon la latitude et la longitude. L’objectif est de com-
prendre comment ces fonctions varient en fonction de chaque variable et d’en
analyser les comportements globaux. Les concepts de dérivées directionnelles,
dérivées partielles et gradient sont essentiels pour déterminer les points cri-
tiques de fonctions de deux variables et sont utilisés dans de nombreux do-
maines comme ’optimisation, la mécanique et la physique. Grace a ces outils,
il est possible de détecter les points extremaux de ces fonctions.

Le mathématicien frangais Joseph Fourier a étudié des équations aux dérivées
partielles, des équations dont les inconnues sont des fonctions de plusieurs va-
riables, il s’est concentré principalement sur 1’étude de la propagation de la
chaleur. Dans son ouvrage majeur, Théorie analytique de la chaleur (1822),
il introduit une méthode novatrice pour résoudre les équations aux dérivées
partielles en décomposant des fonctions en séries trigonométriques.

Joseph Fourier
(1761-1830)



Chapitre 28 : Fonctions de deux variables H. BRINGUIER

Dans tout le chapitre, R? est muni du produit scalaire, de la norme et de la distance euclidienne.

1 Ouverts de R? et fonctions continues

1.1 Ouverts de R?
,—[Déﬁnition 1.1 (boule ouverte de Rz)} <

Soit a € R? et 7 € RY.

La boule ouverte de centre a et de rayon r, notée B(a,r), est ’ensemble 4

des vecteurs de R? dont la distance euclidienne & a est strictement 4 / )
. s . N . !
inférieure & r i.e. Y

B(a,r) = {b € R? |ja —b|| < 7}.

\. J

Remarque : On peut définir de maniere analogue la boule fermé de centre a et de rayon r par

Bla,y) ={becR? |la—b|| <r}.

Définition 1.2 (ouvert de Rz)]

Soit U une partie de R2. On dit que U est un ouvert si :

Ya e U,3r >0, B(asr)CU.

Remarque : Intuitivement, une partie U est ouverte si U ne contient pas sa “frontiere”.

Exemple 1.3 :
1. Montrer que le demi-plan H = {(z,y) € R?, x > 0} est ouvert.
2. Montrer que le demi-plan H’ = {(z,y) € R?, x > 0} n’est pas ouvert.
3. Soit ce R?2 et R € R’ . Montrer que la boule ouverte B(c,R) est ouverte.

1.2 Fonctions continues

Jusqu’a la fin du chapitre, U désignera un ouvert non vide de R2.

Notation : Soit f une fonction définie sur U et a = (x,y) € U, on notera indifféremment f(z,y) ou f(a).

,—[Déﬁnition 1.4 (graphe)]

Soit f: U — R.
On appelle graphe de f le sous-ensemble de R? suivant :

Ly ={(zy,f(2y)), (x,y) € U}.
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,—[Déﬁnition 1.5 (fonction continue)] \

Soient f: U — R, aeUetlecR.
e On dit que f(b) —> ¢ lorsque
b—a

Ve >0,3n>0,Vb e, <||a—b<n=> |£—f(b)<s>.

e On dit que f est continue en a si f(b) P~ f(a).

e On dit que f est continue si, pour tout a € U, f est continue en a.

\. J

Vocabulaire : Les points b de R? vérifiant |la — b|| < 7 sont dits au voisinage de a. C’est 'analogue des voisinages
réels, en remplagant la valeur absolue par la norme (et donc les intervalles [a — 7,a + 7] par les boules fermées
B(a;n) = {b € R?, [la— bl < n}).

Exemple 1.6 : Montrez que les fonctions f; : (z,y) — z et f3 : (z,y) — y sont continues sur R2.

Remarque : Attention, pour montrer qu’une fonction f de deux variables est continue en (zg,yo), il ne suffit pas
de montrer que les fonctions x — f(x,y0) et y — f(zo,y) sont continues respectivement en xg et yo. (c.f. ex. 2.5)

Remarque : La caractérisation séquentielle de la continuité reste valable pour les fonctions définies sur R2.

,—[Proposition 1.7 (stabilité par les opérations algébriques)} N\

Soient a € U et f,g: U — R deux fonctions continues en a.
e Pour tout (A1,\2) € R2, A1 f + Aag est continue en a.
e Si f(a) # 0, alors 1/f est continue en a.
e fg est continue en a.

e Sig(a) # 0, alors f/g est continue en a.

\. J

,—[Proposition 1.8 (composition & gauche)} \

Soient f:U — R, I un intervalle contenant f(U) et g : I — R.
Si f est continue en a € U et si g est continue en f(a), alors g o f est continue en a.

\. J

,—[Proposition 1.9 (composition & droite par une fonction d’une seule variable)} N

Soient f : U — R, I un intervalle non vide de R et 7;,72 deux fonctions de I dans R telles que
vt — (71(t),72(t)) soit & valeurs dans U.

Si 1 et 2 sont continues en a € I et f continue en y(a), alors f oy :t+—— f(y1(¢),72(t)) est continue
en a.

\. J

,—[Proposition 1.10 (composition & droite par une fonction de deux variables)} N\

Soient V' un ouvert non vide de R?, f : U — R et 71,72 deux fonctions de V dans R telles que
v :b— (71(b),72(b)) soit & valeurs dans U.

Si 1 et 2 sont continues en a € V et f continue en y(a), alors fo~y:b+— f(71(b),72(b)) est continue
en a.
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2 Dérivées partielles

2.1 Définition
,—(Déﬁnition 2.1 (dérivées partielles)] <

Soient f: U — R et ag = (zo,y0) € U.

Di(yo) — R
. — f(z.y)
est dérivable en zg, on dit que f admet une premieére dérivée partielle en (zo,yo) et on note :

e Sil’application partielle o1 : { définie sur Dy (yo) = {z € R, (z,y0) € U},

O1f(x0,90) = %(xﬂay()) = ¢} (o).

0
8—;:(960@0)

(70,90)

Dg(iL‘o) — R

y  — f(zoy)
est dérivable en y, on dit que f admet une deuxiéme dérivée partielle en (x,yo) et on note :

e Sil’application partielle 5 : { définie sur Do(x0) = {y € R, (zo,y) € U},

Onf (woo) = %(950790) — (o).

of

6—y($0’y0)

(x()vyo)

\. J

Exemple 2.2 :
1. Calculer (si elles existent) les dérivées partielles de la fonction f : (z,y) — 2z + 4xy? définie sur R2.
2. Soit U = {(z,y) € R?, = > 0}. Calculer (si elles existent) les dérivées partielles de la fonction

f;{(U — R

xy) +— v
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,—[Proposition 2.3 (opérations sur les dérivées partielles)] <
Soient f,g deux fonctions de U dans R et a € U.
Si f et g admettent des dérivées partielles en a, alors :
e pour tout (\,u) € R%, \f + ug admet des dérivées partielles en a et :
ONf+pg), .\ Of 9g ONf+pg), .\ Of 99
e fg admet des dérivées partielles en a et :
afg), \_of dg afg), \_of g
Oz (a) = 875(@)9(“) + f(a)%(a) et Ty(a> = ((Ty(a)g(a) + f(a>@(a)'
e si g ne s’annule pas en a alors 1/g admet des dérivées partielles en a et :
0,
01/9) (5 _ 52(a) o 0(/9) gy _ (@)
Ox 9%(a) dy 9%(a)
e si g ne s’annule pas en a alors f/g admet des dérivées partielles en a et :
) )
241/9) () 91 (a)g(a) — f(a)2(a) o 2/9) ) gt (@)g(a) — f(a) 3 (a)
Ox 9%(a) Ay 9%(a)

Exemple 2.4 : Soit f : R2 — R polynomiale, i.e. qu'il existe (m,n) € N? | (@i,j)(,5)e[,mlx[1,n] tel que pour

m n
tout (x,y) € R?, f(a,y) = Z Z ai,jxiyj. Par produit et combinaison linéaire, f admet des dérivées partielles.
i=0 j=0

Attention : L’existence des dérivées partielles n’implique pas la continuité.

Exemple 2.5 : Soit f: R? — R telle que £(0,0) =0 et f(z,y) = zfiffyz pour (z,y) € R?\{(0,0)}.
Montrer que f admet des dérivées partielles en tout point de R? mais n’est pas continue en (0,0).

Graphe de f

2.2 Fonctions de classe ¢! et gradient

,—[Déﬁnition 2.6 (fonction de classe ‘51)] N

Une fonction f: U — R est dite de classe €' si f admet des dérivées partielles en tout point de U et

si les fonctions % et % sont continues.

On note € (U,R) 'ensemble des fonctions de classe € définies sur U & valeurs dans R.

\. J

Exemple 2.7 : Soit f: R?> — R polynomiale, alors f est de classe €.
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~ Définition 2.8 (gradient) | .
Soit f € €Y (UR).
0 lle gradient d Vf Pappl vo— B
n appelle gradient de f et on note ’application :
ppelle g f J Tapp 0 (%ﬁ(a)%ﬁ(a))

Remarque : L’application V f prend ses valeurs dans R?, c’est un champ de vecteurs. On représente souvent de
telles fonctions dans le plan, en affichant pour de nombreux point a = (z,y), le vecteur V f(x,y) en prenant pour
origine le point a = (z,y).
Exemples 2.9 :

e Sif:(x,y)— ax+ PBy+,alors Vf: (z,y) — (a,B). Le gradient de f est constant.

NN RN RN IR RN RN XN

NN N RN RN RN RN X

Graphe de f. Représentation du champ de vecteurs V f.

. P —Z —Y
e Sif:(x,y)— /1— a2 —y?2 définie sur B(0,1), alors V[ : (z,y) —> , .
fi(ey) — y (0,1) fi(zy) (\/l_xz_yQ \/l_xQ_y2>

R I
RN [
NN N 1/ 777
SNNNANN | S
— e ey P
e e e - .—*--'---'--—'-—'”:
L SO e e
P S VNN N -
VAV TV N N
R A B TR
I [ T
Graphe de f. Représentation du champ de vecteurs Vf.
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,—[Théoréme 2.10 (développement limité d’ordre 1)} <
Soient f € €1(UR) et ag € U.
Alors
f(@) = f(ao) + (¥ f(ao)la— ao) +o(lla ~ aol)

Remarques : Notons (zg,yo) les coordonnées de ay.
e Le théoréeme précédent affirme que la fonction affine

07 (a0)

(2,) —> Flao) + (@ — 20) 2L (a0) + (y — w5

ox

approche au premier ordre la fonction f au voisinage de ag.
e Le plan d’équation

= flao) + (o = a0) 5 (a0) + (0= 1) 5 ()

qui est la graphe de cette fonction affine est appelé le plan tan-
gent du graphe de la fonction f en ag. Ce plan est, parmi tous
les plans, la meilleure approximation de la surface d’équation
z = f(x,y) au point ag.

e Le théoreme précédent peut aussi s’écrire :

0 0
flan+ o +8) = flao) + hgl (an) + K5 (an) + o).

Corollaire 2.11 (caractere ¢ implique la continuité)]

Soit f € €*(U,R). Alors f est continue sur U.

Interprétation géométrique du gradient :

On a
flao+v) = flao) + (Vf(ao)lv) + of/[v]]).

v—(0,0)
Justifions le fait que le gradient donne la direction dans laquelle f croit le plus vite.
Supposons que V f(ag) # 0.
D’apres l'inégalité de Cauchy-Schwarz : (V f(ao)|v) < ||V f(ao)||||v]|, avec égalité si et seulement si v a le méme
sens et la méme direction que V f(ag) (c’est-a-dire s’ils sont positivement liés).
Donc l'approximation affine g : v — f(ag) + (Vf(ap)|v) de f en ag est maximale pour v qui a méme sens et
méme direction que V f(ap) parmi ’ensemble des vecteurs v de méme norme.

,—[Proposition 2.12 (opérations algébriques sur les fonctions de classe ‘51)] N\

Soient f,g € €1(U,R).
V(A i) € RE Nf + pg est de classe € sur U.
fg est de classe €' sur U.

e Si g ne s’annule pas sur U, alors 1/g est de classe € sur U.

e Si g ne s’annule pas sur U, alors f/g est de classe € sur U.
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3 Dérivées partielles et composées

3.1 Dérivée selon un vecteur

,—(Déﬁnition 3.1 (dérivée directionnelle)]

Soit f: U — R, a €U etvecR2

Si @ :t— f(a+ tv) est dérivable en 0, on dit que
f admet une dérivée en a selon le vecteur v et on
note :

\.

Remarques :
e L’application ¢ : t — f(a + tv) est définie au voisinage de 0 car U est un ouvert.

e Pour v = (1,0), on a D, f(a) = %(a) et pour v = (0,1), on a D, f(a) = %(a).

,—[Proposition 3.2 (le caractere ¢! implique Iexistence des dérivées directionnelles)]

Soit f € €1 (UR), a € U et v = (h,k) € R?.
Alors f admet une dérivée directionnelle en a selon le vecteur v et on a :
of of

D.f(a) = h-(a) + k@(a) = (Vf(a)lv).

\.

J

Exemple 3.3 : Calculer la dérivée de I’application f : (z,y) — 22

v = (3,5) de deux fagons différentes.

— y? au point a = (1,2) suivant le vecteur

Remarque : Attention, une fonction peut admettre une dérivée en un point selon n’importe quel vecteur sans

étre méme continue en ce point.

Exemple 3.4 :

RZ — R \
2 12 A
Soit f : L pour x # 0; ) ydf

(v) — {7 =
Y sinon % \\ /‘/

Montrer que f admet des dérivées directionnelles en ‘
(0,0) selon n’importe quel vecteur mais n’est pas conti- @ |
nue en ce point. 4

3.2 Composition a gauche

,—[Proposition 3.5 (composition a gauche et dérivation)}

Soit I un intervalle non trivial. Soit f € ¢*(U,R) telle que f(U) C I et g € €*(L,R).
Alors, go f € €1(U,R) et pour tout a € U :

d(go 0 d(go 0
WD -gu@ge o 2w -gr@le.
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3.3 Dérivée selon un chemin

,—[Théoréme 3.6 (premiere régle de la chaine)} \

Soient f € €1 (U,R) et I un intervalle non trivial.

2
Soit ~ : { i : ]571(15),72(15)) tel que 71 et v sont de classe €t et v(I) C U.

Alors fory:t— f(v1(t),72(t)) est de classe 6!
et pour tout t € I :

(F o7 (®) = Z @M + 5 (OB,

En notant v/(t) = (v1(t),7%(t)), cette égalité s’écrit

(fon)'(t) = (VL)Y (1))

La dérivée (foy)'(t) s’appelle la dérivée de f selon larc « en t.

\. J

Remarques :
e La dérivée de f selon 'arc v en t est égale & la dérivée de f en (¢) selon le vecteur v/ (t).

e La conclusion du théoréme peut se réécrire Vt € I,-%(f(1(t),72(t))) = %(V(t))’yi(t) + %(’y(t))’yé (t).

Exemple 3.7 : Soit f € ¢1(R?R). Montrer que la fonction g : t — f(t2,t3) est de classe €' et calculer sa
dérivée en fonction des dérivées partielles de f.

Interprétation géométrique du gradient avec les lignes de niveaux :

On appelle ligne de niveau d’une fonction f : U — R l’ensemble {(z,y) € U, f(z,y) = c} ou c € R.

Si la fonction v parametre une ligne de niveau, c’est-a-dire si la fonction f o est constante, alors sa dérivée est
nulle done, pour tout t € I, (Vf(v(¢))|y (t)) = 0; le gradient V f(y(t)) est donc orthogonal au vecteur v'(¢) qui
dirige la tangente au point y(¢) de la ligne de niveau.

On dit que le gradient V f est orthogonal aux lignes de niveau.

Exemple 3.8 : Considérons f : (x,y) > 22 + y? et vy : t > (rcos(t),rsin(t)) o r € Ry.
Montrer de deux maniere différentes que (V f((¢))|y'(¢t)) = 0 pour tout ¢ € R.

3.4 Dérivée d’une fonction apres un changement de variables

,—[Théoréme 3.9 (deuxieme regle de la chaine)w

) 1
Soient f € €1(U,R) et V un ouvert non vide de R2.
Soient ¢, € €1 (V,R) telles que ® : (u,0) — (p(u,0),3(u,0)) soit & valeurs dans U.
Alors, I'application fo ® : (u‘,/v) : Iﬁ(ap(U,v)W(um)) est de classe € et pour tout (u,v) € V :
o 22D 1) = Lot ) G2 ) + S (o) b)) 32 (wv)
o 222D 1) = L ot b uao) G ) + L olusw) o) T ).

Remarque : Pour différentier les éléments de U et de V, on a noté (z,y) les éléments de U et (u,v) ceux de V.
On a donc noté % et 8@ pour les dérivées partielles de fonctions définies sur U et é% et % pour les dérivées

partielles de fonctions définies sur V. On peut toutefois écrire ce théoreme uniquement avec x et y.
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Ry xR — R
(r,0) +——  f(rcos(f),rsin(d)) -
Montrer que g est de classe € et calculer ses dérivées partielles en fonction de celles de f.

Exemple 3.10 : Soit f € €*(R%,R). On définit g : {

4 Extremum et point critique

,—[Déﬁnition 4.1 (extremum)] |

Soit V' une partie non vide de R? (pas forcément ouverte), f: V — Ret a € V.
e On dit que f admet un maximum en a si: Vo € V, f(v) < f(a).
e On dit que f admet un minimum en a si : Yo € V, f(v) > f(a).
e On dit que f admet un maximum local en a si : Ip > 0,Yv € V N B(a,n), f(v) < f(a).
e On dit que f admet un minimum local en a si : Ip > 0,Yv € V N B(a,n), f(v) > f(a).
e On dit que f admet un extremum en a si f admet un maximum ou un minimum en a.

e On dit que f admet un extremum local en a si f admet un maximum local ou un minimum local
en a.

\. J

Remarque : La condition 3 > 0,Yv € V N B(a,n) peut simplement se résumer par “au voisinage de a”. Lorsque
nous avons donné la notion de voisinage sur R, nous avons mis des inégalités larges mais la notion est équivalente
avec des inégalités strictes.

,—[Déﬁnition 4.2 (point critique)] N

Soit f € €1 (UR) et a € U.

On dit que a est un point critique de f si %(a) = g—g(a) =0, c’est-a-dire si V f(a) = 0.
,—[Théoréme 4.3 (condition nécessaire pour un extremum local)] N

Soit f € €*(UR) et a € U.
Si f admet un extremum local en a, alors a est un point critique de f.

\. J

Remarques :

e Ce résultat permet de connaitre les extrema locaux possibles en résolvant I’équation V f(a) = 0. Il faut
ensuite les étudier cas par cas (et étudier la fonction sur le bord du domaine si celui-ci n’est pas un ouvert).

e Attention la réciproque est fausse.

Exemple 4.4 : Soient f: (x,y) — 22 +y? et g : (z,y) — 2% — y? définies sur R?.

Graphe de f. Graphe de g.

Etudier les extrema de f et deg.
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