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L’histoire des polyndmes est étroitement liée & celle de l'algebre. Alors que les
mathématiques grecques sont essentiellement arithmétiques et géométriques
et pratiquement sans symbolisme, Diophante lui utilise d’autres techniques
sans faire référence a la géométrie, il introduit un <« nombre indéterminé >,
une inconnue. L’algebre est née. Pierre de Fermat le surnommera le < Pére de
I’algebre ». Mais de Diophante & Fermat il y a encore tant de choses a découvrir.
Existe-t-il des solutions entiéres non nulles a une équation du type z" +y" = 2"
pour des degrés autres que 1 et 27

La réponse est non. C’est le dernier théoréeme de Fermat qui a été démontré
en 1994 par le mathématicien Andrew Wiles. Ce théoreme aura nargué les
mathématiciens pendant plus de 300 ans. Nombreux sont ceux qui ont tenté de
le résoudre par 'algebre. Euler s’y cassa les dents. L’école allemande de la fin
du XIXe siecle avec Richard Dedekind, Ernst Kummer, David Hilbert, Emmy
Noether va développer et approfondir le travail sur les polyndémes, construisant
la notion d’anneau, d’idéal, de corps, de nombres algébriques sans pour autant
résoudre le probleme. Cependant, ils ont ainsi fait faire aux mathématiques
algébriques un saut considérable.

Pierre de Fermat
(1601-1665)
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Dans tout le chapitre, K désigne R ou C. Les éléments de K sont appelés des scalaires.

1 Les polynomes comme objets algébriques

1.1 L’algebre des polynomes

,—[Déﬁnition 1.1 (polyndme et coefﬁcient)} \

On appelle polynéme & coefficients dans K toute suite P = (a,)nen € KV dont les coefficients sont
nuls a partir d’un certain rang.
Pour n € N, a,, est appelé le coefficient de degré n du polynéme P.

\. J

Remarque : Deux polyndémes sont égaux si, et seulement si, ils ont les mémes coefficients.

,—(Déﬁnition 1.2 (opérations sur les polynémes)] \

Soient P = (ap)nen et Q = (bn)nen deux polynomes a coefficients dans K. Soit A € K.
La somme de P et de @ est le polyndéme P + Q = (an + by )nen-

Le produit de P et de @ est le polynéme P x Q = PQ = (¢p,)nen définie par Vn € N, ¢, = Z apby—k.
k=0

Le produit de P par un scalaire X est le polynome A\.P = AP = (Aay, )nen-

\. J

Exemple 1.3 : Soient P = (1,2,1,0,---) et @ = (1,1,0,-- ).
Alors, P+ Q = (2,3,1,0,---), PQ = (1,3,3,1,0,---) et 3P = (3,6,3,0,-- ).

,—[Déﬁnition 1.4 (itéré d’'un polynéme)} \

Soit P un polynome a coefficients dans K.
Pour tout n € N, on note P" le polynome P x --- x P.
—_———

n fois
Par convention, P’ = (1,0,0,---).

\. J

Notation : On notera X le polynéme (0,1,0,---), appelée indéterminée. Avec le produit défini plus haut, on a
X?%=1(0,0,1,0,---), X3 = (0,0,0,1,0, - - - ), etc. Par ailleurs, on notera par abus X le polynéme (),0,0,---) ot A € K.
Avec ces notations, pour tout polynéme P = (ax)ken, il existe n € N tel que :

P:Zaka:ao—&—alX—i—...—&—anX"

k=0

+oo
On note parfois P = Z ar X", cette < somme infinie > est en fait une somme finie (termes nuls pour k > n).

k=0
L’avantage d’une telle notation est que I’on n’a pas besoin de préciser la valeur de 'entier n.
Exemple 1.5 : En reprenant ’exemple précédent, on note alors P =14+2X + X2 et Q =1+ X.

Notation : On note K[X] I’ensemble des polynomes & coefficients dans K en I'indéterminée X.

Hors programme : L’ensemble K[X] muni des lois +, x et - vérifient certaines propriétés classiques.
On dit que (K[X], +,-,%) est une « K-algébre commutative ».
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,—[Proposition 1.6 (formules du binéme de Newton et de factorisation dans K[X ])] N
Soient P,Q € K[X]. Soit n € N.
Alors
n - n—1
P + n __ Pk‘ n—~k et P O™ = (P — X Pk n—1—k
Prar=3 ()P @ =(P-@)x 3y r'q

1.2 Degré d’un polynéme

,—[Déﬁnition 1.7 (degré, coefficient dominant, polynéme unitaire)} N\

Soit P € K[X]. On définit le degré de P, noté deg(P), de la maniére suivante :

1. Si P # 0, P peut s’écrire de maniere unique sous la forme

n n €N
P= Z apX* avec Vk € [0,n], ax € K
k=0 an # 0

On dit alors que le degré du polynome P est n, et que a,, est le coefficient dominant de P.
Lorsque ce coefficient dominant a,, est égal a 1, on dit que le polynéme P est unitaire.

2. Si P =0, on dit que le degré de P est —oo.

\. J

Remarques :
e Un polynéme unitaire est non nul par définition.
e Les polynomes de degré 0 sont les scalaires non nuls.

Définition 1.8 (ensemble K,,[X ])]

Soit n € N. On note K,,[X] 'ensemble des polynémes de degré inférieur ou égal a n.

Vocabulaire : Les éléments de Ko[X] (polynomes de degré au plus 0) sont appelés polynoémes constants.
Par abus, nous ne ferons pas de distinction entre Ko[X] et K.

Conventions :
e —00 < n pour tout entier n;
¢ (—00) 4 (—00) = —00; (—00) + n =n+ (—o00) = —oo pour tout entier n;
e (—00) xn =mnx (—o00) = —o0 pour tout n € N*.
,—[Proposition 1.9 (degré d’un produit et d’une somme)} N\

Soient P et () dans K[X].

1. deg(PQ) = deg(P) + deg(Q)

2. deg(P + @) < max(deg(P),deg(Q)).
Condition suffisante d’égalité : si deg(P) # deg(Q), alors deg(P + @) = max(deg(P),deg(Q)).

\. J

Remarques :
1. En particulier pour a € K, deg(aP) < deg(P) (on a l'égalité si o # 0).
2. Dans le cas ou P et ) sont non nuls et de méme degré, deg(P + Q) = max(deg(P),deg(Q)) si et seulement
si la somme des coefficients dominants est non nulle.
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,—[Corollaire 1.10 (simplifications dans K[X ])} N

Soient P, @ et R dans K[X].
1. PQ=0< (P=00u@ =0)
2. (P#£0et PQ=PR) = Q=R

1.3 Substitution de ’'indéterminée dans un polynéme

1.3.1 Evaluation d’un polynéme

,—[Déﬁnition 1.11 (évaluation d’un polyndme en une valeur de K)} N\

Soient P € K[X] et o € K.
On définit le scalaire P(a) comme le scalaire obtenu en remplacant I'indéterminée X par a dans

I’expression de P.
n

Autrement dit, si P = Z apX* avec n € N et Vk € [0,n], ax € K, alors P(a) = Z apa®.
k=0 k=0

Attention : X n’est pas un nombre. Il est incorrect d’écrire < pour X = 1 >, il faut écrire < évaluons en 1 >.

Remarque : P(0) = ag (coefficient constant) car par convention 0° = 1.

Algorithme de Horner :

n
Pour évaluer un polynéome P = Z ap X" en a, il suffit de faire n additions et n multiplications en suivant le
k=0
parenthésage ci-dessous (en commengant par la parenthese la plus intérieure) :
Pla)=((- ((apa+ an—1)a+ apn—2)a+ - )a+a)a+ag

C’est la méthode la plus efficace pour évaluer un polynéme informatiquement.

Algorithme d’Hérner sous Python ot P est représenté par une liste contenant ses coefficients :

def Hormer (P,alpha):
s=0
for k in range(len(P)):
s=s*alpha+P[len(P) -1-k]
return s

,—(Déﬁnition 1.12 (fonction polynomiale)] \

Une fonction polynomiale est une fonction f définie sur une partie non vide E de K et a valeurs dans
K telle qu’il existe un polynéme P € K[X] pour lequel

Ve e E, f(zx)=P(z).

On dit qu’'une telle fonction est la fonction polynomiale associée au polynéme P.

n
Autrement dit, une fonction polynomiale est une fonction de la forme x > Z apzk.
k=0

Notation : La fonction polynomiale (sur un ensemble F C K) associée a un polynéme P est notée P.
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1.3.2 Composition de deux polynémes

,—[Déﬁnition 1.13 (composée de deux polynémes)} N\

Soient P et @) dans K[X].
On définit le polynéme composé P o @) (aussi noté P(Q)) comme le polynéme obtenu en remplacant
I'indéterminée X par @ dans ’expression de P.

n

Autrement dit, si P = Zaka avec n € N et Vk € [0,n], ar, € K, alors Po @ = P(Q) = Zaka.
k=0 k=0

\. J

Exemple 1.14 : Pour P = X? +2X et Q = X + 3, calculer Qo P et Po Q.

Proposition 1.15 (degré d’un polynéme composé)}

Soient P, € K[X], avec @ non constant (i.e. deg(Q) > 0).
Alors deg(P o Q) = deg(P) x deg(Q).

Remarque : Lorsque @ est un polynome constant a € K alors Po @ = P(«a) € K est de degré —oo ou 0, suivant
que P(a) est nul ou non.

2 Divisibilité et division euclidienne dans K[X]

Dans cette partie, nous noterons A et B des polyndémes génériques et garderons la lettre ) pour le ”quotient”.

,—[Déﬁnition 2.1 (relation de divisibilité dans K[X ])} \

Soient A,B € K[X].

On dit que A divise B dans K[X], ce que l'on note A | B, lorsqu’il existe @ € K[X] tel que B = QA.
On dit alors que A est un diviseur de B et que B est un multiple de A.

On note Mul(A) I’ensemble des multiples de A et Div(B) I’ensemble des diviseurs de B.

\. J

Remarques :
1. On a Mul(0) = {0}, VA € K[X],1 € Div(A) et 0 € Mul(A).
2. 81D | Aet D| B, alors D divise n'importe quelle combinaison arithmétique de A et B, c’est-a-dire
D | AU + BV pour tous U et V dans K[X].

,—[Proposition 2.2 (conséquence de la divisibilité en termes d’inégalité sur le degré)} N\

Soient A,B € K[X]\{0} tels que A | B. Alors deg(A) < deg(B).

\. J

,—[Déﬁnition 2.3 (éléments associés dans K[X ])] \

Soient A,B € K[X]. On dit que A et B sont associés lorsque A | B et B | A.

\. J

,—[Proposition 2.4 (caractérisation des éléments associés)} N

Soient A,B € K[X].
Les polynomes A et B sont associés si et seulement s’il existe A € K* tel que A = AB.
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,—[Théoréme 2.5 (théoreme de la division euclidienne dans K[X ])] \

Soient A,B € K[X], avec B # 0. Il existe un unique couple (Q,R) € K[X]? tel que :

{ A=BQ+R
deg(R) < deg(B)

Cette écriture est appelée division euclidienne de A par B.
Dans cette division euclidienne, @) est appelé quotient et R est appelé reste.

\. J

Remarque : Soit (4,B) € K[X]? avec B # 0; B | A < le reste de la division euclidienne de A par B est 0.

Exemple 2.6 : Effectuer la division euclidienne de A = X* +3X3 4+ 7X%2 — X +5 par B = X2 + 1.

3 Dérivation des polynomes

3.1 Polynome dérivé

,—[Déﬁnition 3.1 (polynéme dérivé)} \

n
Soit P € K[X], qui s’écrit sous la forme P = Zaka (avec n € N et ay € K).
k=0
On définit son polynome dérivé P’ :

n n—1
P = Z kap Xk 1 = Z(k + Dag1 X"
k=1 k=0

Remarque : La dérivée d'un polynome existe toujours, et correspond a la dérivée de la fonction polynomiale
associée.

,—[Proposition 3.2 (degré d’'un polynéme dérivé)} \

Soit P € K[X].
1. Sideg(P) > 1 (i-e. si P est non constant), alors deg (P’) = deg(P) — 1.
2. Sideg(P) < 1 (i.e. si P est constant), alors P’ = 0 et donc deg(P’) = —oc.

Autrement dit :
deg(P) —1 si deg(P) > 1
—00 sinon

deg(P') = {

\. J

,—[Théoréme 3.3 (dérivation d'une combinaison linéaire, d’'un produit, d’une Composée)]—

Soient P et ) dans K[X].
1. Pour tous A et p dans K, (AP + uQ) = AP’ + u@Q’
2. (PQ) =PQ+ PQ
3. (PoQ) =Q' x (P oQ)

PCSI 803, Lycée Déodat de Séverac 6 2025/2026
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3.2 Dérivées successives

,—[Déﬁnition 3.4 (polynémes dérivés successifs)} \

Soit P € K[X].
On définit les polynémes dérivés successifs de P de la méme maniere que pour les fonctions (par
récurrence), en posant :

PO =p
{ P = (P(”_l)), pour tout n € N*.
,—[Proposition 3.5 (degré de la dérivée n-itme d’un polynf)me)} N\

Soit P € K[X], et soit n € N.

1. Si deg(P) > n, alors deg (P™) = deg(P) — n.

2. Si deg(P) < n, alors P = 0 et donc deg (P(”)) = —o0.
Autrement dit :

deg(P™) = { deg(P) —n si deg(P) > n

—00 sinon
,—[Corollaire 3.6 (caractérisation des polynomes de dérivée n-ieme nulle)} N\
Soient P € K[X] et n € N.
P = 0 si et seulement si deg(P) < n.

,—[Théoréme 3.7 (dérivations successives d’'une combinaison linéaire, d’un produit)

| —

Soient P et ) dans K[X], et soit n € N.
1. Pour tous A et p dans K, (AP + uQ)(”) = AP™ 4+ uQ™.

" /n i " n\ ok
<k> pRQE—H = 3 (k> PRI Q)|

2. Formule de Leibniz : (PQ)™ = Z

k=0 k=0
3.3 Formule de Taylor polynomiale
,—[Théoréme 3.8 (formule de Taylor polynomiale)] \

Soit n € Net a € K.
Pour tout P € K, [X],

P™(a)

— P®)(a) K / P"(a) 2 w
P:kz_o o (X —a)f =Pl@)+ P(a)(X —a) + ——(X —a)* + -+ — (X —a)".
" PRy P& (0
Remarque : Pour a =0, P = Z %X k. les scalaires ©) sont les coefficients du polynéme P.

k=0

Exemple 3.9 : Ecrire la formule de Taylor polynomiale en & = 1 pour P = X3 — X + 2.
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4 Racines d’un polynéme

4.1 Définition et existence

Définition 4.1

Soient P € K[X] et o € K. On dit que « est une racine (ou un zéro) du polynéme P lorsque P(«a) = 0.

Remarque : Si P € R[X] a pour racine o € C\R, alors @ est aussi racine de P. (c.f. Prop. 4.14)

4.2 Lien avec la divisibilité des polynomes

,—[Théoréme 4.2 (caractérisation d’une racine en termes de divisibilité)} N

Soit P € K[X] et soit o € K.
Le scalaire « est racine de P si et seulement si (X — «)|P.

,—[Proposition 4.3 (divisibilité lorsqu’on a plusieurs racines)} N\
Soit P € K[X], soit n € N* et soient aq, ... , o, € K des racines distinctes de P.

Alors H(X — ag)|P.
k=1

\. J

Remarque : Dans le cas d’'un polynéme P € R[X] avec une racine aw € C\R, @ est une racine de P distincte de
a, donc le polynéme P est multiple du polynéme réel : (X — a)(X —a) = X2 — 2Re(a) X + |a|?. (c.f. Prop. 4.14)

4.3 Relation entre le degré et le nombre de racines

,—[Théoréme 4.4 (majoration du nombre de racines)} <

Le nombre de racines d’un polynome non nul est majoré par son degré.

\. J

,—[Corollaire 4.5 (un polyndéme ayant une infinité de racines est nul)} N\

Soit P € K[X] tel que P admet une infinité de racines. Alors P est le polyndéme nul.

\. J

,—[Corollaire 4.6 (unicité du polynéme définissant une fonction polynomiale)} N\

Si f est une fonction polynomiale sur une partie infinie de K, alors le polynéme définissant la fonction
polynomiale f est unique.

\. J

Reformulation : Si P et Q € K[X] sont tels que P(x) = Q(z) sur une partie infinie de K, alors ils sont égaux.

Démonstration. Soit E une partie infinie de K, et soient P et @ € K[X] tels que : Vz € E, P(x) = Q(z).
Le polynéme P — @ a alors une infinité de racines (tous les éléments de E), donc P — Q =0, i.e. P = Q. O
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4.4 Multiplicité d’une racine

~ Définition 4.7 (multiplicité) .

Soit P € K[X] un polynéme non nul, et soit a € K.

On appelle multiplicité de « en tant que racine de P le plus grand entier m tel que (X — )™ divise
P

m=max{k €N, (X —a)"|P}.

On dit alors que « est une racine de multiplicité m de P.

\. J

Remarques :
1. Un tel maximum existe bien, car I'ensemble {k € N, (X — a)*|P} est une partie de N non vide (elle contient
0) et majorée (par deg(P)).
2. Dire que « est racine de P de multiplicité 0 revient a dire que a n’est pas racine de P.
Par conséquent, « est racine de P si et seulement si sa multiplicité est au moins égale a 1.

Un peu de vocabulaire :
On dit qu’'une racine est :
e une racine simple lorsque sa multiplicité est égale a 1;
e une racine multiple lorsque sa multiplicité est supérieure ou égale a 2;
e une racine double lorsque sa multiplicité est égale a 2;
e une racine triple lorsque sa multiplicité est égale a 3.
On appelle nombre de racines comptées avec multiplicités la somme des multiplicités de toutes les racines d’'un
polynome.

,—[Proposition 4.8 (premiére caractérisation de la multiplicité)] \
Soient P € K[X] un polynéme non nul, « € K et m € N.
1. o est racine de P de multiplicité au moins m si et seulement si 3Q € K[X], P = (X — a)™Q.
2. « est racine de P de multiplicité égale a m si et seulement si : 3Q € K[X], { S(Z)(;( O_ )" Q

Exemple 4.9 : Montrer que 1 est racine double de X3 4+ X2 — 5X + 3.

Cas des polynémes de degré 2 :

Soit P = aX? +bX + ¢ un polynéme de degré 2, avec a, b, ¢ € K et a # 0. On note A = b — 4ac son discriminant.
e Si A #0, P possede deux racines simples dans C.
e Si A =0, P possede une racine double dans K.

,—[Proposition 4.10 (divisibilité lorsqu’on a plusieurs racines avec multiplicités)} N\
Soit P € K[X] un polynéme non nul, et soient oy, ... , @, € K des racines distinctes de P de
n
multiplicités respectives my, ... , m, € N. Alors H(X — ag)™*|P.
k=1
,—[Corollaire 4.11 (majoration du nombre de racines avec multiplicités)] N
Le nombre de racines comptées avec multiplicités d’un polynéme non nul est majoré par son degré.
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4.5 Lien entre multiplicité et dérivation

,—[Théoréme 4.12 (seconde caractérisation de la multiplicité, avec les dérivées Successives)]—

Soit P € K[X] un polynéme non nul, et soient o € K, m € N.

1. « est racine de P de multiplicité au moins m si et seulement si :
Vk € [0;m — 1], P®)(a) = 0.
2. « est racine de P de multiplicité égale a m si et seulement si :

Vk € [0;m — 1], P®(a) =0
{ P™(a) #0

\. J

Cas particulier : Soit P € K[X]\{0} et soit o € K.
e « est racine simple de P (multiplicité = 1) si et seulement si P(a) = 0 et P'(a) # 0.
e « est racine multiple de P (multiplicité > 2) si et seulement si P(a) =0 et P'(a) = 0.

Exemple 4.13 : Soit P = X? — 11X? + 32X — 28, montrer que P admet une racine multiple.

Proposition 4.14 (multiplicités des racines complexes conjuguées d’un polynome réel)

Soit P € R[X] un polynéome non nul, et soit & € C\R une racine de P de multiplicité m € N.
Alors @ est aussi une racine de P de multiplicité m.

Remarque : Dans le cas ou P € R[X] et « € C\R est une racine de P de multiplicité m, le polynéme P est
multiple de (X — a)™(X — @)™ = (X2 — 2Re(a) X + |a]?)™ € R[X].

4.6 Relations entre coefficients et racines

,—[Théoréme 4.15 (relations entre coefficients et racines pour un polynome Scindé)} N\

n
Soit P un polynome de degré n € N*, qui s’écrit sous la forme P = Z ap XF* (avec a, € K).
k=0

On suppose que P admet n racines comptées avec multiplicité que 1’on note «q , ..., a,, chaque racine
étant répétée autant de fois que sa multiplicité.
On a alors
" [0 . ao
n—1 n
E o; = — a H o; = ( ].) a
i=1 n i=1 n
. 7

Exemples 4.16 :

1. Soit P =aX?+ bX + c un polynome de degré 2 (avec a, b et ¢ € K, a # 0).
La somme des deux racines complexes (éventuellement confondues dans le cas d’une racine double) est égale

. b L. C
a ——, et leur produit a —.
a a

2. Soit P = azX® + asX? + a1 X + ap un polynéme de degré 3 (avec ag, ai, az et az € K, a3 # 0), et soient
a1, ao et ag ses trois racines complexes, chaque racine étant répétée autant de fois que sa multiplicité.

On a alors :
a9 Qg
ay+ o +a3=—— et aiooag = ——.
as asz
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Par exemple, pour P = X3 — 6X2 — X + 30, notons o, ay et a3 ses racines dans C, on a :
a1 +ag+a3 =06 et ajagas = —30.

Ces relations peuvent aider dans la recherche des racines.

5 Factorisation

5.1 Polyndémes scindés

Définition 5.1 (polynéme scindé)}

Un polynome scindé de K[X] est un polynéme non constant qui peut s’écrire comme produit de po-
lynémes de degré 1 de K[X].

Vocabulaire : Un polyndme scindé a racines simples est un polynome scindé et tel que toutes ses racines sont
simples.

Exemple 5.2 : Dans R[X], les polynomes de degré 2 qui sont scindés sont ceux pour lesquels le discriminant est
positif ou nul.
Par exemple, le polynéme X2 + 1 n’est pas scindé dans R[X], mais il I'est dans C[X], car X2 +1 = (X —i)(X +1).

,—[Théoréme 5.3 (théoreme de d’Alembert-Gauss, admis)] \

Tout polynéme non constant de C[X| admet au moins une racine (dans C).

\. J

,—[Corollaire 5.4 (Tout polynéme non constant de C[X] est scindé)] \

Tout polynéme non constant de C[X] est scindé.

\. J

Remarque : Par conséquent, le nombre de racines complexes comptées avec multiplicités d’un polynéme non
nul est égal a son degré.

5.2 Polynomes irréductibles

Définition 5.5 (polynome irréductible) |

Un polynome irréductible est un polynome de degré supérieur ou égal a 1 dont les seuls diviseurs sont 1
et lui-méme, & multiplication prés par un scalaire (non nul).

Autrement dit, P € K[X] est irréductible si et seulement si :
1. deg(P) > 1;
2. VA,B € K[X], P=AB = (deg(A4) =0 ou deg(B) =0).

Exemple 5.6 : Soit P = X% 4 1.
1. P n’est pas irréductible dans C[X], car P = (X —i)(X +1).

2. En revanche, il est irréductible dans R[X] car il est de degré 2 sans racine réelle (cf. théoréme suivant).
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,—[Théoréme 5.7 (description des polynémes irréductibles de C[X| ou de R[X ])J N

1. Dans C[X], les polynomes irréductibles sont les polynémes de degré 1.
2. Dans R[X], les polynoémes irréductibles sont :
(a) les polynomes de degré 1;
(b) les polynémes de degré 2 sans racine réelle (i.e. de discriminant strictement négatif).

\. J

Remarques :
1. Tout polynéme irréductible unitaire de C[X] est donc de la forme X — «, avec « € C.
2. Tout polynome irréductible unitaire de R[X] est donc de la forme :
(a) X —a, avec a € R;
(b) ou X2 4+ aX + b, avec a et b dans R et a? — 4b < 0.

5.3 Décomposition en facteurs irréductibles dans C[X]

,—[Théoréme 5.8 (théoréme de décomposition en facteurs irréductibles dans C[X ])] \

Tout polynéme non nul P de C[X] se décompose de maniére unique, & 'ordre pres des facteurs, sous

la forme
P=a(X—a1)™(X —ay)™ (X —a,)™"

avec a € C*, r € N, les a; des nombres complexes distincts et les m; des entiers naturels non nuls.

\. J

Remarques :
1. On retrouve la forme d’un polynéme scindé.

2. Dans I'écriture précédente, a est le coefficient dominant de P, les «; sont ses racines et les entiers m; sont
les multiplicités des racines «;.

n—1
Exemple 5.9 : Soit n € N*| la factorisation de X™ — 1 dans C[X] est : | X" — 1 = H (X — emnﬂ)
k=0
,—[Proposition 5.10 (caractérisation de la divisibilité)} \

Soient P et @ des polynémes non nuls de C[X].
Quitte & rajouter des facteurs (X — ai)o dans les décompositions de P et ) en facteurs irréductibles,
P et @ peuvent s’écrire sous la forme

P=a(X—a)™ (X —a)™ et Q=bX—a;)™ (X —a,)™

avec a et b € C*, r € N, les a; des nombres complexes distincts et les m; et m} des entiers naturels
(pas forcément non nuls). On a alors I’équivalence suivante :

P|Q & Vie[lr], m; <m]

\. J

Traduction en termes de racines et de multiplicités :
Soient P et @ des polynémes non nuls de C[X]. On a I’équivalence :

P | Q & toute racine complexe de P est aussi racine de @, avec une multiplicité supérieure dans @

Exemple 5.11 : Montrer que (X2 + X + 1)? divise (X + 1)2023 — X2023 _ 1,
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5.4 Décomposition en facteurs irréductibles dans R[X]

,—(Théoréme 5.12 (théoreme de décomposition en facteurs irréductibles dans R[X ])] N

Tout polynéme non nul P de R[X] se décompose de maniére unique, & Pordre prés des facteurs, comme
un produit de polynémes irréductibles unitaires de R[X], multiplié par un réel non nul.

\. J

,—(Théoréme 5.13 (théoreme de décomposition en facteurs irréductibles dans R[X], variante)]—

Tout polynéme non nul P de R[X] se décompose de maniére unique, & l'ordre prés des facteurs, sous
la forme
P =qaP™Py"?... P""

avec a € R*, r € N, les m; dans N* et les P; des polyndémes irréductibles unitaires distincts de R[X].

\. J

Les facteurs irréductibles P; sont donc de la forme P; = X —«; avec a; € R, ou P, = X% +a; X +b; avec a;, b; € R
et CL,'2 —4b; < 0.
Remarques :

1. Le polynéme P est scindé dans R[X] si et seulement si tous les facteurs irréductibles P; sont de degré 1.

2. Une telle décomposition peut étre obtenue a partir de celle dans C[X], en regroupant les facteurs corres-
pondant a des couples de racines complexes conjuguées.

3. On peut aussi caractériser la divisibilité de deux polyndmes réels a I’aide de leurs décompositions en facteurs
irréductibles dans R[X], de méme qu’avec les décompositions en irréductibles dans C[X].

Exemple 5.14 : Factoriser X° + 32 dans R[X].
Exemple 5.15 : Soit n € N*. La factorisation de X™ — 1 dans R[X] est :

21

2k
X"—-1=(X+1)(X-1) H <X2 — 2cos (J) X—l—l) si n est pair;
k=1

2km

n—1
2
xm—1=x-1]] (X2 — 2cos <> X+ 1) si m est impair.
n
k=1

6 Décomposition en éléments simples d’une fonction rationnelle

Vocabulaire : Une fonction rationnelle est une fonction qui s’écrit comme le quotient de deux fonctions polyno-
miales. On appelle poles de la fonction les racines du polyndme associé au dénominateur.

Objectif : décomposer une fonction rationnelle quelconque en une somme de fonctions rationnelles < plus simples >.

,—[Théoréme 6.1 (théoreme de décomposition en éléments simples pour des poles simples, admis)]—

Soit B € K[X] un polynéme scindé & racines simples de degré n € N*. On note aq, ..., a;, les racines
de B. Soit A € K[X] tel que deg(A) < deg(B) et tel que Vk € [1;n], A(ag) # 0.
Alors il existe des uniques coefficients A1, ..., A\, € K tels que

Vo € K\{ai; ...; an}, 2Ei; :Z Ak

r — O
k=1 ~—~—

partie polaire

associée au pole
simple oy,

Al
De plus, Vk € [1;n], \x, = %.
\ v
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. . 4 . +4
Exemple 6.2 : Donner la décomposition en éléments simples de f : x — S N
3 — 322 + 2x
Extension pour des polynémes quelconques :
1. Sideg(A) > deg(B), en notant @ le quotient et R le reste de la division euclidienne de A par B, on obtient

ggi; =Q(z) + ggg On a alors deg(R) < deg(B), ce qui nous raméne au théoréme ci-dessus.

2. Si B est scindé (toujours vraie dans C[X]), notons my, la multiplicité de o dans B. La décomposition en
éléments simples s’écrit :

Alz) < Ak A2 A
B(x) _kz<xak + (x — ag)? ot (x — ag )™

=1

partie polaire associée au pole ay,

3. Dans R[X], si B n’est pas scindé, alors B admet comme facteurs irréductibles des polynémes de degré 2 de
discriminant strictement négatif. Dans ce cas, la partie polaire associée & un de ces facteurs (que 1'on note
X2 +aX +b) est de la forme :

A+ pra o Ak Py,
22+ax+b (22 + ax + b)™*

On peut retrouver cette décomposition a partir de la décomposition en éléments simple dans C puis en
regroupant les parties polaires associées a des poles conjugués.

Exemple 6.3 : Donner la forme de la décomposition en éléments simples de :

4ot + 42% 4+ 1 . 1 s hres T
L fes BT A T @@ -1y

Techniques pour calculer efficacement les coefficients de la décomposition en éléments simples d’une
fonction rationnelle f :

e Si « est un podle de multiplicité m, on peut obtenir le coefficient A,, de 1’élément simple W en
r—«
multipliant f par (z — @)™ puis en faisant tendre x vers a.
e Considérer lirf 2¥ f(x) pour un exposant k bien choisi (souvent k = 1).
T—r+00

e Utiliser le caractere conjugué des poles et 1'unicité de la décomposition en éléments simples pour un
dénominateur dans R[X].

e Utiliser un argument de parité (ou d’imparité).

e Evaluer f en une valeur particuliere qui n’est pas un pole.

Exemple 6.4 : Déterminer les décompositions en éléments simples de :
5 22

2. g1 ———
xt =1 gt (x4+1)3

1. frx—

Applications de la décomposition en éléments simples :

A . . o u’ u'
e Intégration de fonctions rationnelles : on se ramene a intégrer —- ou o
U u

e Calcul de certaines dérivées successives.
e Calcul de certaines sommes, pour faire apparaitre des sommes télescopiques.
448z

Exemple 6.5 : Déterminer une primitive de f : x — ———.
5 4+ 4x

Exemple 6.6 : Déterminer les dérivées successives de f: z +— — T
72 —

n
Exemple 6.7 : Montrer que la suite (Un>n€|127+oo|1 définie par u,, = Z 21 converge et déterminer sa limite.
k=2
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