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1 Les polynômes comme objets algébriques 2
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L’histoire des polynômes est étroitement liée à celle de l’algèbre. Alors que les
mathématiques grecques sont essentiellement arithmétiques et géométriques
et pratiquement sans symbolisme, Diophante lui utilise d’autres techniques
sans faire référence à la géométrie, il introduit un ≪ nombre indéterminé ≫,
une inconnue. L’algèbre est née. Pierre de Fermat le surnommera le ≪ Père de
l’algèbre ≫. Mais de Diophante à Fermat il y a encore tant de choses à découvrir.
Existe-t-il des solutions entières non nulles à une équation du type xn+yn = zn

pour des degrés autres que 1 et 2 ?
La réponse est non. C’est le dernier théorème de Fermat qui a été démontré
en 1994 par le mathématicien Andrew Wiles. Ce théorème aura nargué les
mathématiciens pendant plus de 300 ans. Nombreux sont ceux qui ont tenté de
le résoudre par l’algèbre. Euler s’y cassa les dents. L’école allemande de la fin
du XIXe siècle avec Richard Dedekind, Ernst Kummer, David Hilbert, Emmy
Noether va développer et approfondir le travail sur les polynômes, construisant
la notion d’anneau, d’idéal, de corps, de nombres algébriques sans pour autant
résoudre le problème. Cependant, ils ont ainsi fait faire aux mathématiques
algébriques un saut considérable.

Pierre de Fermat
(1601-1665)
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Dans tout le chapitre, K désigne R ou C. Les éléments de K sont appelés des scalaires.

1 Les polynômes comme objets algébriques

1.1 L’algèbre des polynômes

On appelle polynôme à coefficients dans K toute suite P = (an)n∈N ∈ KN dont les coefficients sont
nuls à partir d’un certain rang.
Pour n ∈ N, an est appelé le coefficient de degré n du polynôme P .

Définition 1.1 (polynôme et coefficient)

Remarque : Deux polynômes sont égaux si, et seulement si, ils ont les mêmes coefficients.

Soient P = (an)n∈N et Q = (bn)n∈N deux polynômes à coefficients dans K. Soit λ ∈ K.
La somme de P et de Q est le polynôme P +Q = (an + bn)n∈N.

Le produit de P et de Q est le polynôme P ×Q = PQ = (cn)n∈N définie par ∀n ∈ N, cn =

n∑
k=0

akbn−k.

Le produit de P par un scalaire λ est le polynôme λ.P = λP = (λan)n∈N.

Définition 1.2 (opérations sur les polynômes)

Exemple 1.3 : Soient P = (1,2,1,0, · · · ) et Q = (1,1,0, · · · ).
Alors, P +Q = (2,3,1,0, · · · ), PQ = (1,3,3,1,0, · · · ) et 3P = (3,6,3,0, · · · ).

Soit P un polynôme à coefficients dans K.
Pour tout n ∈ N, on note Pn le polynôme P × · · · × P︸ ︷︷ ︸

n fois

.

Par convention, P 0 = (1,0,0, · · · ).

Définition 1.4 (itéré d’un polynôme)

Notation : On notera X le polynôme (0,1,0, · · · ), appelée indéterminée. Avec le produit défini plus haut, on a
X2 = (0,0,1,0, · · · ), X3 = (0,0,0,1,0, · · · ), etc. Par ailleurs, on notera par abus λ le polynôme (λ,0,0, · · · ) où λ ∈ K.
Avec ces notations, pour tout polynôme P = (ak)k∈N, il existe n ∈ N tel que :

P =

n∑
k=0

akX
k = a0 + a1X + . . .+ anX

n

On note parfois P =

+∞∑
k=0

akX
k, cette ≪ somme infinie ≫ est en fait une somme finie (termes nuls pour k > n).

L’avantage d’une telle notation est que l’on n’a pas besoin de préciser la valeur de l’entier n.

Exemple 1.5 : En reprenant l’exemple précédent, on note alors P = 1 + 2X +X2 et Q = 1 +X.

Notation : On note K[X] l’ensemble des polynômes à coefficients dans K en l’indéterminée X.

Hors programme : L’ensemble K[X] muni des lois +,× et · vérifient certaines propriétés classiques.
On dit que (K[X],+ , · ,×) est une ≪ K-algèbre commutative ≫.
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Soient P,Q ∈ K[X]. Soit n ∈ N.
Alors

(P +Q)n =

n∑
k=0

(
n

k

)
P k Qn−k et Pn −Qn = (P −Q)×

n−1∑
k=0

P k Qn−1−k

Proposition 1.6 (formules du binôme de Newton et de factorisation dans K[X])

1.2 Degré d’un polynôme

Soit P ∈ K[X]. On définit le degré de P , noté deg(P ), de la manière suivante :

1. Si P ̸= 0, P peut s’écrire de manière unique sous la forme

P =

n∑
k=0

akX
k avec

 n ∈ N
∀k ∈ J0,nK, ak ∈ K
an ̸= 0

.

On dit alors que le degré du polynôme P est n, et que an est le coefficient dominant de P .
Lorsque ce coefficient dominant an est égal à 1, on dit que le polynôme P est unitaire.

2. Si P = 0, on dit que le degré de P est −∞.

Définition 1.7 (degré, coefficient dominant, polynôme unitaire)

Remarques :
� Un polynôme unitaire est non nul par définition.
� Les polynômes de degré 0 sont les scalaires non nuls.

Soit n ∈ N. On note Kn[X] l’ensemble des polynômes de degré inférieur ou égal à n.

Définition 1.8 (ensemble Kn[X])

Vocabulaire : Les éléments de K0[X] (polynômes de degré au plus 0) sont appelés polynômes constants.
Par abus, nous ne ferons pas de distinction entre K0[X] et K.

Conventions :
� −∞ < n pour tout entier n ;
� (−∞) + (−∞) = −∞ ; (−∞) + n = n+ (−∞) = −∞ pour tout entier n ;
� (−∞)× n = n× (−∞) = −∞ pour tout n ∈ N∗.

Soient P et Q dans K[X].

1. deg(PQ) = deg(P ) + deg(Q)

2. deg(P +Q) ⩽ max(deg(P ),deg(Q)).
Condition suffisante d’égalité : si deg(P ) ̸= deg(Q), alors deg(P +Q) = max(deg(P ),deg(Q)).

Proposition 1.9 (degré d’un produit et d’une somme)

Remarques :

1. En particulier pour α ∈ K, deg(αP ) ⩽ deg(P ) (on a l’égalité si α ̸= 0).

2. Dans le cas où P et Q sont non nuls et de même degré, deg(P +Q) = max(deg(P ),deg(Q)) si et seulement
si la somme des coefficients dominants est non nulle.
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Soient P , Q et R dans K[X].

1. PQ = 0 ⇔ (P = 0 ou Q = 0)

2. (P ̸= 0 et PQ = PR) =⇒ Q = R

Corollaire 1.10 (simplifications dans K[X])

1.3 Substitution de l’indéterminée dans un polynôme

1.3.1 Évaluation d’un polynôme

Soient P ∈ K[X] et α ∈ K.
On définit le scalaire P (α) comme le scalaire obtenu en remplaçant l’indéterminée X par α dans
l’expression de P .

Autrement dit, si P =

n∑
k=0

akX
k avec n ∈ N et ∀k ∈ J0,nK, ak ∈ K, alors P (α) =

n∑
k=0

akα
k.

Définition 1.11 (évaluation d’un polynôme en une valeur de K)

Attention : X n’est pas un nombre. Il est incorrect d’écrire ≪ pour X = 1 ≫, il faut écrire ≪ évaluons en 1 ≫.

Remarque : P (0) = a0 (coefficient constant) car par convention 00 = 1.

Algorithme de Hörner :

Pour évaluer un polynôme P =

n∑
k=0

akX
k en α, il suffit de faire n additions et n multiplications en suivant le

parenthésage ci-dessous (en commençant par la parenthèse la plus intérieure) :

P (α) = ((· · · ((anα+ an−1)α+ an−2)α+ · · · )α+ a1)α+ a0

C’est la méthode la plus efficace pour évaluer un polynôme informatiquement.

Algorithme d’Hörner sous Python où P est représenté par une liste contenant ses coefficients :

1 def Horner(P,alpha):

2 s=0

3 for k in range(len(P)):

4 s=s*alpha+P[len(P)-1-k]

5 return s

Une fonction polynomiale est une fonction f définie sur une partie non vide E de K et à valeurs dans
K telle qu’il existe un polynôme P ∈ K[X] pour lequel

∀x ∈ E, f(x) = P (x).

On dit qu’une telle fonction est la fonction polynomiale associée au polynôme P .

Définition 1.12 (fonction polynomiale)

Autrement dit, une fonction polynomiale est une fonction de la forme x 7→
n∑

k=0

akx
k.

Notation : La fonction polynomiale (sur un ensemble E ⊂ K) associée à un polynôme P est notée P̃ .
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1.3.2 Composition de deux polynômes

Soient P et Q dans K[X].
On définit le polynôme composé P ◦ Q (aussi noté P (Q)) comme le polynôme obtenu en remplaçant
l’indéterminée X par Q dans l’expression de P .

Autrement dit, si P =

n∑
k=0

akX
k avec n ∈ N et ∀k ∈ J0,nK, ak ∈ K, alors P ◦Q = P (Q) =

n∑
k=0

akQ
k.

Définition 1.13 (composée de deux polynômes)

Exemple 1.14 : Pour P = X2 + 2X et Q = X + 3, calculer Q ◦ P et P ◦Q.

Soient P,Q ∈ K[X], avec Q non constant (i.e. deg(Q) > 0).
Alors deg(P ◦Q) = deg(P )× deg(Q).

Proposition 1.15 (degré d’un polynôme composé)

Remarque : Lorsque Q est un polynôme constant α ∈ K, alors P ◦Q = P (α) ∈ K est de degré −∞ ou 0, suivant
que P (α) est nul ou non.

2 Divisibilité et division euclidienne dans K[X]

Dans cette partie, nous noterons A et B des polynômes génériques et garderons la lettre Q pour le ”quotient”.

Soient A,B ∈ K[X].
On dit que A divise B dans K[X], ce que l’on note A | B, lorsqu’il existe Q ∈ K[X] tel que B = QA.
On dit alors que A est un diviseur de B et que B est un multiple de A.
On note Mul(A) l’ensemble des multiples de A et Div(B) l’ensemble des diviseurs de B.

Définition 2.1 (relation de divisibilité dans K[X])

Remarques :

1. On a Mul(0) = {0}, ∀A ∈ K[X], 1 ∈ Div(A) et 0 ∈ Mul(A).

2. Si D | A et D | B, alors D divise n’importe quelle combinaison arithmétique de A et B, c’est-à-dire
D | AU +BV pour tous U et V dans K[X].

Soient A,B ∈ K[X]\{0} tels que A | B. Alors deg(A) ⩽ deg(B).

Proposition 2.2 (conséquence de la divisibilité en termes d’inégalité sur le degré)

Soient A,B ∈ K[X]. On dit que A et B sont associés lorsque A | B et B | A.

Définition 2.3 (éléments associés dans K[X])

Soient A,B ∈ K[X].
Les polynômes A et B sont associés si et seulement s’il existe λ ∈ K∗ tel que A = λB.

Proposition 2.4 (caractérisation des éléments associés)
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Chapitre 14 : Polynômes H. Bringuier

Soient A,B ∈ K[X], avec B ̸= 0. Il existe un unique couple (Q,R) ∈ K[X]2 tel que :{
A = BQ+R
deg(R) < deg(B)

Cette écriture est appelée division euclidienne de A par B.
Dans cette division euclidienne, Q est appelé quotient et R est appelé reste.

Théorème 2.5 (théorème de la division euclidienne dans K[X])

Remarque : Soit (A,B) ∈ K[X]2 avec B ̸= 0 ; B | A ⇔ le reste de la division euclidienne de A par B est 0.

Exemple 2.6 : Effectuer la division euclidienne de A = X4 + 3X3 + 7X2 −X + 5 par B = X2 + 1.

3 Dérivation des polynômes

3.1 Polynôme dérivé

Soit P ∈ K[X], qui s’écrit sous la forme P =

n∑
k=0

akX
k (avec n ∈ N et ak ∈ K).

On définit son polynôme dérivé P ′ :

P ′ =

n∑
k=1

kakX
k−1 =

n−1∑
k=0

(k + 1)ak+1X
k.

Définition 3.1 (polynôme dérivé)

Remarque : La dérivée d’un polynôme existe toujours, et correspond à la dérivée de la fonction polynomiale
associée.

Soit P ∈ K[X].

1. Si deg(P ) ⩾ 1 (i.e. si P est non constant), alors deg (P ′) = deg(P )− 1.

2. Si deg(P ) < 1 (i.e. si P est constant), alors P ′ = 0 et donc deg(P ′) = −∞.

Autrement dit :

deg(P ′) =

{
deg(P )− 1 si deg(P ) ⩾ 1
−∞ sinon

.

Proposition 3.2 (degré d’un polynôme dérivé)

Soient P et Q dans K[X].

1. Pour tous λ et µ dans K, (λP + µQ)′ = λP ′ + µQ′

2. (PQ)′ = P ′Q+ PQ′

3. (P ◦Q)′ = Q′ × (P ′ ◦Q)

Théorème 3.3 (dérivation d’une combinaison linéaire, d’un produit, d’une composée)
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3.2 Dérivées successives

Soit P ∈ K[X].
On définit les polynômes dérivés successifs de P de la même manière que pour les fonctions (par
récurrence), en posant : {

P (0) = P

P (n) =
(
P (n−1)

)′
pour tout n ∈ N∗.

Définition 3.4 (polynômes dérivés successifs)

Soit P ∈ K[X], et soit n ∈ N.
1. Si deg(P ) ⩾ n, alors deg

(
P (n)

)
= deg(P )− n.

2. Si deg(P ) < n, alors P (n) = 0 et donc deg
(
P (n)

)
= −∞.

Autrement dit :

deg(P (n)) =

{
deg(P )− n si deg(P ) ⩾ n
−∞ sinon

.

Proposition 3.5 (degré de la dérivée n-ième d’un polynôme)

Soient P ∈ K[X] et n ∈ N.
P (n) = 0 si et seulement si deg(P ) < n.

Corollaire 3.6 (caractérisation des polynômes de dérivée n-ième nulle)

Soient P et Q dans K[X], et soit n ∈ N.

1. Pour tous λ et µ dans K, (λP + µQ)
(n)

= λP (n) + µQ(n).

2. Formule de Leibniz : (PQ)(n) =

n∑
k=0

(
n

k

)
P (k)Q(n−k) =

n∑
k=0

(
n

k

)
P (n−k)Q(k).

Théorème 3.7 (dérivations successives d’une combinaison linéaire, d’un produit)

3.3 Formule de Taylor polynomiale

Soit n ∈ N et α ∈ K.
Pour tout P ∈ Kn[X],

P =

n∑
k=0

P (k)(α)

k!
(X − α)k = P (α) + P ′(α)(X − α) +

P ′′(α)

2
(X − α)2 + · · ·+ P (n)(α)

n!
(X − α)n.

Théorème 3.8 (formule de Taylor polynomiale)

Remarque : Pour α = 0, P =

n∑
k=0

P (k)(0)

k!
Xk : les scalaires

P (k)(0)

k!
sont les coefficients du polynôme P .

Exemple 3.9 : Écrire la formule de Taylor polynomiale en α = 1 pour P = X3 −X + 2.
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4 Racines d’un polynôme

4.1 Définition et existence

Soient P ∈ K[X] et α ∈ K. On dit que α est une racine (ou un zéro) du polynôme P lorsque P (α) = 0.

Définition 4.1

Remarque : Si P ∈ R[X] a pour racine α ∈ C\R, alors α est aussi racine de P . (c.f. Prop. 4.14)

4.2 Lien avec la divisibilité des polynômes

Soit P ∈ K[X] et soit α ∈ K.
Le scalaire α est racine de P si et seulement si (X − α)|P .

Théorème 4.2 (caractérisation d’une racine en termes de divisibilité)

Soit P ∈ K[X], soit n ∈ N∗ et soient α1, . . . , αn ∈ K des racines distinctes de P .

Alors

n∏
k=1

(X − αk)|P .

Proposition 4.3 (divisibilité lorsqu’on a plusieurs racines)

Remarque : Dans le cas d’un polynôme P ∈ R[X] avec une racine α ∈ C\R, α est une racine de P distincte de
α, donc le polynôme P est multiple du polynôme réel : (X − α)(X − α) = X2 − 2Re(α)X + |α|2. (c.f. Prop. 4.14)

4.3 Relation entre le degré et le nombre de racines

Le nombre de racines d’un polynôme non nul est majoré par son degré.

Théorème 4.4 (majoration du nombre de racines)

Soit P ∈ K[X] tel que P admet une infinité de racines. Alors P est le polynôme nul.

Corollaire 4.5 (un polynôme ayant une infinité de racines est nul)

Si f est une fonction polynomiale sur une partie infinie de K, alors le polynôme définissant la fonction
polynomiale f est unique.

Corollaire 4.6 (unicité du polynôme définissant une fonction polynomiale)

Reformulation : Si P et Q ∈ K[X] sont tels que P (x) = Q(x) sur une partie infinie de K, alors ils sont égaux.

Démonstration. Soit E une partie infinie de K, et soient P et Q ∈ K[X] tels que : ∀x ∈ E, P (x) = Q(x).
Le polynôme P −Q a alors une infinité de racines (tous les éléments de E), donc P −Q = 0, i.e. P = Q.
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4.4 Multiplicité d’une racine

Soit P ∈ K[X] un polynôme non nul, et soit α ∈ K.
On appelle multiplicité de α en tant que racine de P le plus grand entier m tel que (X − α)m divise
P :

m = max
{
k ∈ N , (X − α)k|P

}
.

On dit alors que α est une racine de multiplicité m de P .

Définition 4.7 (multiplicité)

Remarques :

1. Un tel maximum existe bien, car l’ensemble
{
k ∈ N , (X − α)k|P

}
est une partie de N non vide (elle contient

0) et majorée (par deg(P )).

2. Dire que α est racine de P de multiplicité 0 revient à dire que α n’est pas racine de P .
Par conséquent, α est racine de P si et seulement si sa multiplicité est au moins égale à 1.

Un peu de vocabulaire :
On dit qu’une racine est :

� une racine simple lorsque sa multiplicité est égale à 1 ;
� une racine multiple lorsque sa multiplicité est supérieure ou égale à 2 ;
� une racine double lorsque sa multiplicité est égale à 2 ;
� une racine triple lorsque sa multiplicité est égale à 3.

On appelle nombre de racines comptées avec multiplicités la somme des multiplicités de toutes les racines d’un
polynôme.

Soient P ∈ K[X] un polynôme non nul, α ∈ K et m ∈ N.
1. α est racine de P de multiplicité au moins m si et seulement si ∃Q ∈ K[X], P = (X − α)mQ.

2. α est racine de P de multiplicité égale à m si et seulement si : ∃Q ∈ K[X],

{
P = (X − α)mQ
Q(α) ̸= 0

.

Proposition 4.8 (première caractérisation de la multiplicité)

Exemple 4.9 : Montrer que 1 est racine double de X3 +X2 − 5X + 3.

Cas des polynômes de degré 2 :
Soit P = aX2+ bX + c un polynôme de degré 2, avec a, b, c ∈ K et a ̸= 0. On note ∆ = b2− 4ac son discriminant.

� Si ∆ ̸= 0, P possède deux racines simples dans C.
� Si ∆ = 0, P possède une racine double dans K.

Soit P ∈ K[X] un polynôme non nul, et soient α1, . . . , αn ∈ K des racines distinctes de P de

multiplicités respectives m1, . . . , mn ∈ N. Alors

n∏
k=1

(X − αk)
mk |P .

Proposition 4.10 (divisibilité lorsqu’on a plusieurs racines avec multiplicités)

Le nombre de racines comptées avec multiplicités d’un polynôme non nul est majoré par son degré.

Corollaire 4.11 (majoration du nombre de racines avec multiplicités)
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4.5 Lien entre multiplicité et dérivation

Soit P ∈ K[X] un polynôme non nul, et soient α ∈ K, m ∈ N.
1. α est racine de P de multiplicité au moins m si et seulement si :

∀k ∈ J0;m− 1K, P (k)(α) = 0.

2. α est racine de P de multiplicité égale à m si et seulement si :{
∀k ∈ J0;m− 1K, P (k)(α) = 0
P (m)(α) ̸= 0

.

Théorème 4.12 (seconde caractérisation de la multiplicité, avec les dérivées successives)

Cas particulier : Soit P ∈ K[X]\{0} et soit α ∈ K.
� α est racine simple de P (multiplicité = 1) si et seulement si P (α) = 0 et P ′(α) ̸= 0.
� α est racine multiple de P (multiplicité ⩾ 2) si et seulement si P (α) = 0 et P ′(α) = 0.

Exemple 4.13 : Soit P = X3 − 11X2 + 32X − 28, montrer que P admet une racine multiple.

Soit P ∈ R[X] un polynôme non nul, et soit α ∈ C\R une racine de P de multiplicité m ∈ N.
Alors α est aussi une racine de P de multiplicité m.

Proposition 4.14 (multiplicités des racines complexes conjuguées d’un polynôme réel)

Remarque : Dans le cas où P ∈ R[X] et α ∈ C\R est une racine de P de multiplicité m, le polynôme P est
multiple de (X − α)m(X − α)m = (X2 − 2Re(α)X + |α|2)m ∈ R[X].

4.6 Relations entre coefficients et racines

Soit P un polynôme de degré n ∈ N∗, qui s’écrit sous la forme P =

n∑
k=0

akX
k (avec ak ∈ K).

On suppose que P admet n racines comptées avec multiplicité que l’on note α1 , . . . , αn, chaque racine
étant répétée autant de fois que sa multiplicité.
On a alors

n∑
i=1

αi = −an−1

an

n∏
i=1

αi = (−1)n
a0
an

Théorème 4.15 (relations entre coefficients et racines pour un polynôme scindé)

Exemples 4.16 :

1. Soit P = aX2 + bX + c un polynôme de degré 2 (avec a, b et c ∈ K, a ̸= 0).
La somme des deux racines complexes (éventuellement confondues dans le cas d’une racine double) est égale

à − b

a
, et leur produit à

c

a
.

2. Soit P = a3X
3 + a2X

2 + a1X + a0 un polynôme de degré 3 (avec a0, a1, a2 et a3 ∈ K, a3 ̸= 0), et soient
α1, α2 et α3 ses trois racines complexes, chaque racine étant répétée autant de fois que sa multiplicité.
On a alors :

α1 + α2 + α3 = −a2
a3

et α1α2α3 = −a0
a3

.
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Chapitre 14 : Polynômes H. Bringuier

Par exemple, pour P = X3 − 6X2 −X + 30, notons α1, α2 et α3 ses racines dans C, on a :

α1 + α2 + α3 = 6 et α1α2α3 = −30.

Ces relations peuvent aider dans la recherche des racines.

5 Factorisation

5.1 Polynômes scindés

Un polynôme scindé de K[X] est un polynôme non constant qui peut s’écrire comme produit de po-
lynômes de degré 1 de K[X].

Définition 5.1 (polynôme scindé)

Vocabulaire : Un polynôme scindé à racines simples est un polynôme scindé et tel que toutes ses racines sont
simples.

Exemple 5.2 : Dans R[X], les polynômes de degré 2 qui sont scindés sont ceux pour lesquels le discriminant est
positif ou nul.
Par exemple, le polynôme X2+1 n’est pas scindé dans R[X], mais il l’est dans C[X], car X2+1 = (X− i)(X+ i).

Tout polynôme non constant de C[X] admet au moins une racine (dans C).

Théorème 5.3 (théorème de d’Alembert-Gauss, admis)

Tout polynôme non constant de C[X] est scindé.

Corollaire 5.4 (Tout polynôme non constant de C[X] est scindé)

Remarque : Par conséquent, le nombre de racines complexes comptées avec multiplicités d’un polynôme non
nul est égal à son degré.

5.2 Polynômes irréductibles

Un polynôme irréductible est un polynôme de degré supérieur ou égal à 1 dont les seuls diviseurs sont 1
et lui-même, à multiplication près par un scalaire (non nul).

Définition 5.5 (polynôme irréductible)

Autrement dit, P ∈ K[X] est irréductible si et seulement si :

1. deg(P ) ⩾ 1 ;

2. ∀A,B ∈ K[X], P = AB =⇒ (deg(A) = 0 ou deg(B) = 0).

Exemple 5.6 : Soit P = X2 + 1.

1. P n’est pas irréductible dans C[X], car P = (X − i)(X + i).

2. En revanche, il est irréductible dans R[X] car il est de degré 2 sans racine réelle (cf. théorème suivant).
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1. Dans C[X], les polynômes irréductibles sont les polynômes de degré 1.

2. Dans R[X], les polynômes irréductibles sont :

(a) les polynômes de degré 1 ;

(b) les polynômes de degré 2 sans racine réelle (i.e. de discriminant strictement négatif).

Théorème 5.7 (description des polynômes irréductibles de C[X] ou de R[X])

Remarques :

1. Tout polynôme irréductible unitaire de C[X] est donc de la forme X − α, avec α ∈ C.
2. Tout polynôme irréductible unitaire de R[X] est donc de la forme :

(a) X − α, avec α ∈ R ;

(b) ou X2 + aX + b, avec a et b dans R et a2 − 4b < 0.

5.3 Décomposition en facteurs irréductibles dans C[X]

Tout polynôme non nul P de C[X] se décompose de manière unique, à l’ordre près des facteurs, sous
la forme

P = a(X − α1)
m1(X − α2)

m2 · · · (X − αr)
mr

avec a ∈ C∗, r ∈ N, les αi des nombres complexes distincts et les mi des entiers naturels non nuls.

Théorème 5.8 (théorème de décomposition en facteurs irréductibles dans C[X])

Remarques :

1. On retrouve la forme d’un polynôme scindé.

2. Dans l’écriture précédente, a est le coefficient dominant de P , les αi sont ses racines et les entiers mi sont
les multiplicités des racines αi.

Exemple 5.9 : Soit n ∈ N∗, la factorisation de Xn − 1 dans C[X] est : Xn − 1 =

n−1∏
k=0

(
X − e

2ikπ
n

)

Soient P et Q des polynômes non nuls de C[X].

Quitte à rajouter des facteurs (X − αi)
0
dans les décompositions de P et Q en facteurs irréductibles,

P et Q peuvent s’écrire sous la forme

P = a(X − α1)
m1 · · · (X − αr)

mr et Q = b(X − α1)
m′

1 · · · (X − αr)
m′

r

avec a et b ∈ C∗, r ∈ N, les αi des nombres complexes distincts et les mi et m′
i des entiers naturels

(pas forcément non nuls). On a alors l’équivalence suivante :

P | Q ⇔ ∀i ∈ J1,rK, mi ⩽ m′
i

Proposition 5.10 (caractérisation de la divisibilité)

Traduction en termes de racines et de multiplicités :
Soient P et Q des polynômes non nuls de C[X]. On a l’équivalence :

P | Q ⇔ toute racine complexe de P est aussi racine de Q, avec une multiplicité supérieure dans Q

Exemple 5.11 : Montrer que (X2 +X + 1)2 divise (X + 1)2023 −X2023 − 1.
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5.4 Décomposition en facteurs irréductibles dans R[X]

Tout polynôme non nul P de R[X] se décompose de manière unique, à l’ordre près des facteurs, comme
un produit de polynômes irréductibles unitaires de R[X], multiplié par un réel non nul.

Théorème 5.12 (théorème de décomposition en facteurs irréductibles dans R[X])

Tout polynôme non nul P de R[X] se décompose de manière unique, à l’ordre près des facteurs, sous
la forme

P = aPm1
1 Pm2

2 · · ·Pmr
r

avec a ∈ R∗, r ∈ N, les mi dans N∗ et les Pi des polynômes irréductibles unitaires distincts de R[X].

Théorème 5.13 (théorème de décomposition en facteurs irréductibles dans R[X], variante)

Les facteurs irréductibles Pi sont donc de la forme Pi = X−αi avec αi ∈ R, ou Pi = X2+aiX+ bi avec ai, bi ∈ R
et ai

2 − 4bi < 0.

Remarques :

1. Le polynôme P est scindé dans R[X] si et seulement si tous les facteurs irréductibles Pi sont de degré 1.

2. Une telle décomposition peut être obtenue à partir de celle dans C[X], en regroupant les facteurs corres-
pondant à des couples de racines complexes conjuguées.

3. On peut aussi caractériser la divisibilité de deux polynômes réels à l’aide de leurs décompositions en facteurs
irréductibles dans R[X], de même qu’avec les décompositions en irréductibles dans C[X].

Exemple 5.14 : Factoriser X5 + 32 dans R[X].

Exemple 5.15 : Soit n ∈ N∗. La factorisation de Xn − 1 dans R[X] est :

Xn − 1 = (X + 1)(X − 1)

n
2 −1∏
k=1

(
X2 − 2 cos

(
2kπ

n

)
X + 1

)
si n est pair ;

Xn − 1 = (X − 1)

n−1
2∏

k=1

(
X2 − 2 cos

(
2kπ

n

)
X + 1

)
si n est impair.

6 Décomposition en éléments simples d’une fonction rationnelle

Vocabulaire : Une fonction rationnelle est une fonction qui s’écrit comme le quotient de deux fonctions polyno-
miales. On appelle pôles de la fonction les racines du polynôme associé au dénominateur.

Objectif : décomposer une fonction rationnelle quelconque en une somme de fonctions rationnelles ≪ plus simples≫.

Soit B ∈ K[X] un polynôme scindé à racines simples de degré n ∈ N∗. On note α1, . . . , αn les racines
de B. Soit A ∈ K[X] tel que deg(A) < deg(B) et tel que ∀k ∈ J1;nK, A(αk) ̸= 0.
Alors il existe des uniques coefficients λ1, . . . , λn ∈ K tels que

∀x ∈ K\{α1; . . . ; αn},
A(x)

B(x)
=

n∑
k=1

λk

x− αk︸ ︷︷ ︸
partie polaire

associée au pôle
simple αk

De plus, ∀k ∈ J1;nK, λk = A(αk)
B′(αk)

.

Théorème 6.1 (théorème de décomposition en éléments simples pour des pôles simples, admis)
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Exemple 6.2 : Donner la décomposition en éléments simples de f : x 7→ x+ 4

x3 − 3x2 + 2x
.

Extension pour des polynômes quelconques :

1. Si deg(A) ⩾ deg(B), en notant Q le quotient et R le reste de la division euclidienne de A par B, on obtient
A(x)
B(x) = Q(x) + R(x)

B(x) . On a alors deg(R) < deg(B), ce qui nous ramène au théorème ci-dessus.

2. Si B est scindé (toujours vraie dans C[X]), notons mk la multiplicité de αk dans B. La décomposition en
éléments simples s’écrit :

A(x)

B(x)
=

n∑
k=1

(
λk,1

x− αk
+

λk,2

(x− αk)2
+ · · ·+ λk,mk

(x− αk)mk

)
︸ ︷︷ ︸

partie polaire associée au pôle αk

3. Dans R[X], si B n’est pas scindé, alors B admet comme facteurs irréductibles des polynômes de degré 2 de
discriminant strictement négatif. Dans ce cas, la partie polaire associée à un de ces facteurs (que l’on note
X2 + aX + b) est de la forme :

λk,1x+ µk,1

x2 + ax+ b
+ · · ·+ λk,mk

x+ µk,mk

(x2 + ax+ b)mk

On peut retrouver cette décomposition à partir de la décomposition en éléments simple dans C puis en
regroupant les parties polaires associées à des pôles conjugués.

Exemple 6.3 : Donner la forme de la décomposition en éléments simples de :

1. f : x 7→ 4x4 + 4x2 + 1

x2 − x
2. g : x 7→ 1

x2(x− 1)3
3. h : x 7→ x

(x2 + 1)2(x2 − 1)2

Techniques pour calculer efficacement les coefficients de la décomposition en éléments simples d’une
fonction rationnelle f :

� Si α est un pôle de multiplicité m, on peut obtenir le coefficient λm de l’élément simple
λm

(x− α)m
en

multipliant f par (x− α)m puis en faisant tendre x vers α.
� Considérer lim

x→+∞
xkf(x) pour un exposant k bien choisi (souvent k = 1).

� Utiliser le caractère conjugué des pôles et l’unicité de la décomposition en éléments simples pour un
dénominateur dans R[X].

� Utiliser un argument de parité (ou d’imparité).
� Évaluer f en une valeur particulière qui n’est pas un pôle.

Exemple 6.4 : Déterminer les décompositions en éléments simples de :

1. f : x 7→ x5

x4 − 1
2. g : x 7→ x2

(x+ 1)3

Applications de la décomposition en éléments simples :

� Intégration de fonctions rationnelles : on se ramène à intégrer
u′

uk
ou

u′

u2 + 1
.

� Calcul de certaines dérivées successives.
� Calcul de certaines sommes, pour faire apparâıtre des sommes télescopiques.

Exemple 6.5 : Déterminer une primitive de f : x 7→ 4 + 8x

x3 + 4x
.

Exemple 6.6 : Déterminer les dérivées successives de f : x 7→ 2

x2 − 1
.

Exemple 6.7 : Montrer que la suite (un)n∈J2,+∞J définie par un =

n∑
k=2

1

k2 − 1
converge et déterminer sa limite.
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