Interrogation finale du 1^{er} semestre

La qualité de la rédaction, la clarté et la précision des raisonnements interviendront pour une part importante dans l'appréciation des copies. Les résultats doivent être encadrés ou soulignés. Durée : 1h20.

L'usage de la calculatrice est interdit

- 1. Soit une fonction $f: \mathbb{R} \to \mathbb{R}$. Montrer que f peut s'écrire comme somme d'une fonction paire et d'une fonction impaire.
- 2. Résoudre l'équation $z^3 + 27 = 0$ d'inconnue complexe z.
- 3. Montrer que la composée de deux fonctions injectives est injective .
- 4. Soit $n \in \mathbb{N}^*$. Calculer $\sum_{1 \leqslant i \leqslant j \leqslant n} ij$.
- 5. Résoudre |x-5| < |x-1| d'inconnue réelle x.
- 6. On note $f: x \mapsto \ln(1 + \mathbf{e}^x)$. Montrer que f est bijective et déterminer $D_{f^{-1}}$.
- 7. Étude complète de Arcsin.
- 8. Déterminer une primitive de $f: x \mapsto \frac{\mathbf{e}^x}{1 + \mathbf{e}^{2x}}$.
- 9. Résoudre $(E): (1+x^2)y' + xy = \sqrt{1+x^2} \text{ sur } \mathbb{R}.$
- 10. Déterminer une expression explicite de $(u_n)_{n\in\mathbb{N}}$ telle que $u_0=2$ et $\forall n\in\mathbb{N},\ u_{n+1}=2u_n+2$.
- 11. Soit $n \in \mathbb{N}^*$, et soit $A \in \mathrm{GL}_n(\mathbb{K})$. Montrer A^T est inversible et déterminer son inverse.
- 12. Déterminer l'ensemble des fonctions continues $f: \mathbb{R} \to \mathbb{R}$ telles que $: \forall x \in \mathbb{R}, \ f(x)^2 = f(x)$.